Terroir 2010 banner
IVES 9 IVES Conference Series 9 Adjustments of water use efficiency by stomatal regulation during drought and recovery of Verona province grape varieties grafted on two different vitis hybrid rootstocks

Adjustments of water use efficiency by stomatal regulation during drought and recovery of Verona province grape varieties grafted on two different vitis hybrid rootstocks

Abstract

Drought is considered to be the predominant factor both for determining the geographic distribution of vegetation and for restricting crop yields in agriculture. Furthermore, water stress is a limiting factor for a wide range of plant physiological processes and can have a profound effect on plant metabolism and development. Drought stress can decrease the sensitivity of photosynthesis to subsequent water deficits and similarly reduce the sensitivity of stomata to low atmospheric vapor pressure deficit during the dry season. Grapevine cultivars are known to differ in their drought adaptation mechanisms, but there is little knowledge on how many of them behave during a drought event and after recovering. The aim of this study is to analyze how stomatal conductance is regulated under water stress and recovery, as well as how water stress affects adjustments of water use efficiency in cultivar Corvina, Corvinone and Rondinella grafted on Kober 5BB and 140 Ruggeri rootstocks. The experiment was conducted on 4-year old vines, grown in an experimental field of Valpolicella in Verona province. The effects of water deficit and recovery after rewatering were evaluated by using thermal imaging, a potential tool for estimating plant temperature, which can be used as an indicator of stomatal closure and water deficit stress. The thermal indices were compared with measured stomatal conductance. Results of mid-morning and at noon measurements showed significant difference between cultivars for both stomatal conductance and canopy water stress index. An apparent difference between the cultivars was the highest speed of the recovery noted for Corvinone compared to Corvina and Rondinella.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

M.A. Bahouaoui (1), E. Sartor (1), E. Rovetta (1), G.B. Tornielli (1), M. Boselli (1), G. Ferrara (2)

(1) Department of Science and Technology of the Vine and Wine of University of Verona, Via della Pieve 70, 37129 San Floriano (VR) – Italy
(2) Department of science of Plant Production of the University of Bari, Via Amendola, 165/a – 70126 Bari – Italy

Contact the author

Keywords

Stomatal conductance, photosynthesis, water stress, recovery, grapevines

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Development, validation and application of a fast UHPLC-HRMS method for the analysis of amino acids and biogenic amines in wines and musts.

The amino acids in grape juice are an important nitrogen source for yeast during alcoholic fermentation. Additionally, certain AAs are precursors to some of the volatile compounds found in wine and overall

Effectiveness of “curettage” and rootstock over-grafting in the control of esca

Context and purpose of the study. The grapevine domestication requested the need of pruning, which expose the vines to trunk pathogens, leading to the spread of vine trunk diseases.

Influence of planting stock and training strategy on the development and productivity of Pinot noir grapevines

For cool windy climates and/or lower vigor site situations delays in vine development during vine establishment can result in a greater number of growing seasons to achieve full yield potential. Plant material and training strategies utilized are critical factors in promoting vine development and production that is appropriate to the site conditions. The objective of this study was to evaluate nursery planting stock and training strategies for their potential to achieved advanced vine development and yield.

Pruning vine-shoots as a new enological additive to differentiate and improve the quality of wines

The objective of these work was to demonstrate that toasted fragments of pruning vine-shoots added to the wines after fermentation provide them with differentiated aromatic notes and improve their quality.

CHARACTERIZATION AND IDENTIFICATION OF YEAST BIOACTIVE PEPTIDES RELEASED DURING FERMENTATION AND AUTOLYSIS IN MODEL WINE

Aging wine on lees is a consolidated practice during which some yeast components (e.g., polysaccharides,
proteins, peptides) are released and solubilized in wine thus, affecting its stability and quality.
Apart from the widely studied mannoproteins, the role of other yeast components in modulating wine
characteristics is still scarce. Wine peptides have been studied for their contribution to taste, antioxidant,
and antihypertensive potentials. However, the peptides detected in wine can be influenced by the
interaction between yeasts and grape components.