Terroir 2010 banner
IVES 9 IVES Conference Series 9 Adjustments of water use efficiency by stomatal regulation during drought and recovery of Verona province grape varieties grafted on two different vitis hybrid rootstocks

Adjustments of water use efficiency by stomatal regulation during drought and recovery of Verona province grape varieties grafted on two different vitis hybrid rootstocks

Abstract

Drought is considered to be the predominant factor both for determining the geographic distribution of vegetation and for restricting crop yields in agriculture. Furthermore, water stress is a limiting factor for a wide range of plant physiological processes and can have a profound effect on plant metabolism and development. Drought stress can decrease the sensitivity of photosynthesis to subsequent water deficits and similarly reduce the sensitivity of stomata to low atmospheric vapor pressure deficit during the dry season. Grapevine cultivars are known to differ in their drought adaptation mechanisms, but there is little knowledge on how many of them behave during a drought event and after recovering. The aim of this study is to analyze how stomatal conductance is regulated under water stress and recovery, as well as how water stress affects adjustments of water use efficiency in cultivar Corvina, Corvinone and Rondinella grafted on Kober 5BB and 140 Ruggeri rootstocks. The experiment was conducted on 4-year old vines, grown in an experimental field of Valpolicella in Verona province. The effects of water deficit and recovery after rewatering were evaluated by using thermal imaging, a potential tool for estimating plant temperature, which can be used as an indicator of stomatal closure and water deficit stress. The thermal indices were compared with measured stomatal conductance. Results of mid-morning and at noon measurements showed significant difference between cultivars for both stomatal conductance and canopy water stress index. An apparent difference between the cultivars was the highest speed of the recovery noted for Corvinone compared to Corvina and Rondinella.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

M.A. Bahouaoui (1), E. Sartor (1), E. Rovetta (1), G.B. Tornielli (1), M. Boselli (1), G. Ferrara (2)

(1) Department of Science and Technology of the Vine and Wine of University of Verona, Via della Pieve 70, 37129 San Floriano (VR) – Italy
(2) Department of science of Plant Production of the University of Bari, Via Amendola, 165/a – 70126 Bari – Italy

Contact the author

Keywords

Stomatal conductance, photosynthesis, water stress, recovery, grapevines

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Linear sweep voltammetry to classify and characterize the antioxidant properties of tannins

In recent years, numerous studies have been carried out at the OIV on oenological tannins, both with regard to oenological properties and methods of characterization. The results of these recent studies have led to the revision of the general monograph and the drafting of four new monographs, one for each of the four chemical classes into which the tannins have been grouped: ellagitannins, gallotannins, procyanidins/prodelphinidins, profisetinidins/prorobinetinins.

Vintel: a single decision support system for irrigation, fertilization and disease management of grapevine

Vine growers face an increasing number of decisions, both tactical and strategic, in a context where available data and constraints are on the rise, such as resources, societal, environmental, climatic, and economic factors. This has led to a growing supply of decision support systems (DSS) and softwares to manage vineyards. Facing this new complexity, growers must now consider several options: giving up the use of DSS, using systems that are compatible with each other but may limit their options, or using a single system that may be too complex to use effectively. In this context, itk has expanded its Vintel® tool, which was originally designed for grapevine water status management (irrigation, inter-row, cover-crop, etc.), to include fertilization and disease management.

Flavor Enhancement Of Neutral White Wines By Mango Peel Products

Varietal flavor is commonly known as the aromatic character of a wine in which the aroma of a particular grape variety predominates. However, not all varieties present particularly pronounced aromas. Therefore, different methods are constantly sought to enhance the aroma of wines with neutral aromatic characteristics, such as the use of glycosidases (1), certain yeast strains (2) or maceration with different agricultural products. In this work, aiming to improve the sensory profile together with the diversification of this product, white wines, derived from a neutral grape variety, were elaborated with the addition of mango peel by-products.

Above and below–research challenges for the future of winegrape production

Grapevines interact with the climate (aboveground) and the soil (belowground), affecting the characteristics of winegrapes produced. These interactions are impacted by climate change, the erosion of biodiversity, and losses of soil organic matter (SOM).

Climate change is here to stay: adapting vineyards to a warming world

As an industry that thrives more on, but may also be more affected by, vintage variation and regionality than any other agricultural enterprise, grape and wine production is ever more being impacted challenged by climate change.