Terroir 2010 banner
IVES 9 IVES Conference Series 9 Adjustments of water use efficiency by stomatal regulation during drought and recovery of Verona province grape varieties grafted on two different vitis hybrid rootstocks

Adjustments of water use efficiency by stomatal regulation during drought and recovery of Verona province grape varieties grafted on two different vitis hybrid rootstocks

Abstract

Drought is considered to be the predominant factor both for determining the geographic distribution of vegetation and for restricting crop yields in agriculture. Furthermore, water stress is a limiting factor for a wide range of plant physiological processes and can have a profound effect on plant metabolism and development. Drought stress can decrease the sensitivity of photosynthesis to subsequent water deficits and similarly reduce the sensitivity of stomata to low atmospheric vapor pressure deficit during the dry season. Grapevine cultivars are known to differ in their drought adaptation mechanisms, but there is little knowledge on how many of them behave during a drought event and after recovering. The aim of this study is to analyze how stomatal conductance is regulated under water stress and recovery, as well as how water stress affects adjustments of water use efficiency in cultivar Corvina, Corvinone and Rondinella grafted on Kober 5BB and 140 Ruggeri rootstocks. The experiment was conducted on 4-year old vines, grown in an experimental field of Valpolicella in Verona province. The effects of water deficit and recovery after rewatering were evaluated by using thermal imaging, a potential tool for estimating plant temperature, which can be used as an indicator of stomatal closure and water deficit stress. The thermal indices were compared with measured stomatal conductance. Results of mid-morning and at noon measurements showed significant difference between cultivars for both stomatal conductance and canopy water stress index. An apparent difference between the cultivars was the highest speed of the recovery noted for Corvinone compared to Corvina and Rondinella.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

M.A. Bahouaoui (1), E. Sartor (1), E. Rovetta (1), G.B. Tornielli (1), M. Boselli (1), G. Ferrara (2)

(1) Department of Science and Technology of the Vine and Wine of University of Verona, Via della Pieve 70, 37129 San Floriano (VR) – Italy
(2) Department of science of Plant Production of the University of Bari, Via Amendola, 165/a – 70126 Bari – Italy

Contact the author

Keywords

Stomatal conductance, photosynthesis, water stress, recovery, grapevines

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Effect of regulated deficit irrigation regime on amino acids content of Monastrell (Vitis vinifera L.) grapes

Irrigation is an important practice to influence vine quality, especially in Mediterranean regions, characterized by hot summers and severe droughts during the growing season. This study focused on deficit irrigation regime influence on amino acids composition of Monastrell grapevines under semiarid conditions (Albacete, Southeastern of Spain). In 2019, two treatments were applied: non-irrigation (NI) and regulated deficit irrigation (RDI), watered at 30% of the estimated crop evapotranspiration from fruit set to onset of veraison. Grape amino acids content was analyzed by HPLC. Berries from non-irrigated vines showed higher concentration of several amino acids, such as tryptophan (73%), arginine (70%), lysine (36%), isoleucine (27%), and leucine (21%), compared to RDI grapes. Arginine is, together with ammonium ion, the principal nitrogen source for yeasts during the alcoholic fermentation; while isoleucine, tryptophan, and leucine are precursors of fermentative volatile compounds, key compounds for wine quality. Moreover, NI treatment increased in a 14% the total amino acids content in grapes compared to RDI treatment. The reported effects might be because yield was 70% higher in RDI vines than in the NI ones and, therefore, the sink demand was increased in the irrigated vines. In addition, NI vines suffered more severe water stress and it is known that the amino acids synthesis and accumulation can be influenced by the plant response to stress. According to the results, the irrigation regime showed effect on amino acids concentration in Monastrell grapes under semiarid conditions. Grapes from non-irrigated vines showed a higher content of several amino acids relevant to the fermentative process and to the wine aroma compounds formation. It is demonstrated that the final content of nitrogen-related components in grapes is influenced by the irrigation regime. The convenience of the irrigation strategy to suggest will depend on the desired wine style and the target yield levels.

Aromatic profile of chardonnay – clone 809: from berry to sparkling wine in an altitude vineyard

ine consumption is linked to the aromatic profile, consumer acceptance, and reflects the viticultural and oenological practices applied, together with the study related to clones is a way to evaluate the adaptation

WINE LEES AS A SOURCE OF NITROGEN FOR OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION PERFORMANCE

Malolactic fermentation (MLF) is a desired process in red and acidic white wines, after alcoholic fermentation (AF), carried out by the lactic acid bacterium (LAB) Oenococcus oeni. The advantages are an increase of pH, microbiological stabilization and organoleptic improvement of the final wine. However, the presence of stress factors such as ethanol, low pH, high total SO2, lack of nutrients and presence of inhibitors, could affect the successful completion of MLF [1]. Changes in amino acid composition and deficiencies in peptides after AF, showed that MLF can be delayed, signaling its importance for bacterial growth and L-malic acid degradation during MLF [2].

Modeling from functioning of a grape berry to the whole plant

Grape quality is a complex trait that mainly refers to berry chemical composition, including sugars, organic acids, phenolics, aroma and aroma precursor compounds.

Digital PCR: a tool for the early detection of brettanomyces in wine

Brettanomyces bruxellensis is found in various ecological niches, but particularly in fermentative processes: beer, kombucha, cider and wine. In the oenological sector, this yeast is undesirable, as it can produce ethyl phenols, thus altering wine quality. These compounds are characterized by stable or horse-sweat aromas, unpleasant for consumers.