Terroir 2010 banner
IVES 9 IVES Conference Series 9 Adjustments of water use efficiency by stomatal regulation during drought and recovery of Verona province grape varieties grafted on two different vitis hybrid rootstocks

Adjustments of water use efficiency by stomatal regulation during drought and recovery of Verona province grape varieties grafted on two different vitis hybrid rootstocks

Abstract

Drought is considered to be the predominant factor both for determining the geographic distribution of vegetation and for restricting crop yields in agriculture. Furthermore, water stress is a limiting factor for a wide range of plant physiological processes and can have a profound effect on plant metabolism and development. Drought stress can decrease the sensitivity of photosynthesis to subsequent water deficits and similarly reduce the sensitivity of stomata to low atmospheric vapor pressure deficit during the dry season. Grapevine cultivars are known to differ in their drought adaptation mechanisms, but there is little knowledge on how many of them behave during a drought event and after recovering. The aim of this study is to analyze how stomatal conductance is regulated under water stress and recovery, as well as how water stress affects adjustments of water use efficiency in cultivar Corvina, Corvinone and Rondinella grafted on Kober 5BB and 140 Ruggeri rootstocks. The experiment was conducted on 4-year old vines, grown in an experimental field of Valpolicella in Verona province. The effects of water deficit and recovery after rewatering were evaluated by using thermal imaging, a potential tool for estimating plant temperature, which can be used as an indicator of stomatal closure and water deficit stress. The thermal indices were compared with measured stomatal conductance. Results of mid-morning and at noon measurements showed significant difference between cultivars for both stomatal conductance and canopy water stress index. An apparent difference between the cultivars was the highest speed of the recovery noted for Corvinone compared to Corvina and Rondinella.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

M.A. Bahouaoui (1), E. Sartor (1), E. Rovetta (1), G.B. Tornielli (1), M. Boselli (1), G. Ferrara (2)

(1) Department of Science and Technology of the Vine and Wine of University of Verona, Via della Pieve 70, 37129 San Floriano (VR) – Italy
(2) Department of science of Plant Production of the University of Bari, Via Amendola, 165/a – 70126 Bari – Italy

Contact the author

Keywords

Stomatal conductance, photosynthesis, water stress, recovery, grapevines

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

What is the best soil for Sangiovese quality wine?

Sangiovese is one of the main cultivar in the Italian ampelographic outline and it occupies more than 60% of total vineyard surface in the Tuscany region. It is also well known that the environmental

A multidisciplinary approach to evaluate the effects of the training system on the performance of “Aglianico del Vulture” vineyards

Vineyards are complex agro-ecosystems with high spatial and temporal variability. An efficient training system may counteract the adverse effects of this variability. Moreover, considering the climate change issues, choosing an efficient training system that enhances water use and protects the vines from radiative thermal stress has become a priority for the farmers. A multidisciplinary approach that assesses the soil-crop-yield-wine relationships of vineyards in a distributed and holistic way could bring added knowledge on the behavior of the different training systems. This ongoing research aimed to implement a multidisciplinary approach to study the behavior of “Aglianico del Vulture” grapevines trained with two different systems: a spurred cordon (SC) and an “Alberello in parete” (AL), grown in a high-quality wine production area of Basilicata region (Italy). The approach merged several methods and scales of soil, ecophysiology, must/wine quality, and spectral data collection to assess the influence of the training system. Homogeneous zones (HZs) in both training systems were defined through a procedure based on geomorphological classification, unmanned aerial vehicles (UAV) images analysis, and a traditional soil survey supported by geophysical scanning. During the 2021 season, TDR probes monitored soil water content, while grapevine health status was assessed using eco-physiological measurements (LWP, chlorophyll content, PSII photosynthetic efficiency, LAI, and point-based field spectroscopy). These grapevine in-vivo measurements validated the spectral vegetation indexes (NDVI, RENDVI, CVI, and TVI) derived from the UAV multispectral imagery, which monitored the grapevine status in a distributed and non-invasive way. Grape yield, quality of berries, must and wine were measured to assess the effects of the training systems. The first experimental year results showed the variability of the vineyards and revealed relationships among soil parameters, crop characteristics, and vegetation indices of the SC and AL training systems. This multidisciplinary study could bring new insights into the vineyard training system’s effects on grape yield and wine quality.

South American Creole grapevines: new varieties identified in the Caravelí Valley (Peru) and their aromatic profile

The valley of Caravelí (Peru) received the first vine plants in colonial times and the tradition of cultivation is maintained thanks to its terroir and artisanal techniques.

Sensory evaluation of ‘Sauvignon blanc’ grapes by a trained panel

The study described the effect of sensory analysis on commercial ‘Sauvignon blanc’ vineyards within the Stellenbosch Wine of Origin District. The sensorial evaluation of the berries was able to give a description of each parcel type and relate it to the cultural practices.

The use of microwaves during the maceration of Cabernet Sauvignon wines for improving their chromatic characteristics

The use of new technologies such as microwaves (MW) arose in recent years as an efficient alternative to reduce the use of sulfur dioxide (SO2) and as a method for improving wines in terms of color and aroma [1, 2]. MW (non-ionizing electromagnetic waves with frequencies between 300 MHz and 300 GHz) have been widely applied in the food industry in order to reduce processing time and favor food preservation.