Terroir 2010 banner
IVES 9 IVES Conference Series 9 Successive surveys to define practices and decision process of winegrowers to produce “Vins de Pays Charentais” in the Cognac firewater vineyard area

Successive surveys to define practices and decision process of winegrowers to produce “Vins de Pays Charentais” in the Cognac firewater vineyard area

Abstract

[English version below]

Le vin est un des produits finis que l’on obtient à partir de raisins. La vigne réagit à de nombreux facteurs environnementaux et son comportement est directement influencé par les pratiques culturales. L’expression du terroir dans les vins résulte de ces interactions, à la fois au cours du cycle végétal et au cours de la vinification. Pour identifier les pratiques agricoles, viticoles et œnologiques des viticulteurs et pour classer leurs effets sur les vins d’Anjou l’UMT Vinitera a proposé une méthode basée sur des enquêtes successives. Cet article vise à expliquer comment la méthodologie mise au point par l’équipe de l’UMT Vinitera sur le vignoble Anjou Village Brissac (AVB) a été transférée dans le vignoble Cognaçais.
En effet, le vignoble des Charentes est une aire de production d’eau-de-vie de Cognac très étendue : près de 80 000 hectares de vignes parmi lesquels seules quelques parcelles (environ 2000 hectares) sont destinées à la production de vin sous appellation Vin de Pays Charentais (VPC). Les itinéraires techniques spécifiquement pratiqués sur le vignoble VPC n’avaient jamais été étudiés jusqu’à présent et demeuraient méconnus. La première partie du travail a consisté à échantillonner environ 50 des 800 producteurs de VPC sur le vignoble Cognaçais. Ensuite un questionnaire a été élaboré pour recenser les différentes pratiques employées en viticulture et en œnologie ainsi que les motivations des agriculteurs pour produire du vin dans la région. Les résultats de cette première enquête démontrent que la structure d’exploitation et le traitement de la vendange sont des critères distinguant 3 groupes de vignerons VPC, avec différents niveaux d’implication technique sur leurs vignes et leur terroir.
Une seconde enquête est ensuite réalisée et chacun des ces groupes s’est vu adresser un questionnaire spécifique. L’objectif est de distinguer les pratiques agronomiques employées d’une part pour le VPC et d’autre part pour l’eau-de-vie de Cognac. Par des séries de questions fermées successives les producteurs sont amenés à expliquer pourquoi leurs itinéraires techniques varient d’un produit à l’autre et d’un terroir à l’autre (processus dichotomique). Ainsi cette enquête nous permet de comprendre comment un vigneron structure l’arbre de décision qui définit ses pratiques agronomiques et œnologiques pour le Vin de Pays Charentais.

Wine is one of the final products made from grapes. Vine reacts to numerous environmental factors and its behavior is directly modified by winegrower actions. Terroir expression in wines ensues from those interactions during both agronomical and enological process. To identify winegrowers’ agricultural, viticultural and enological practices and to classify their effects on wines in the French region of Anjou, UMT Vinitera suggested a method based on successive surveys. This paper aims at showing how the methodology submitted by UMT Vinitera team on Anjou Village Brissac (AVB) vineyard has been transferred to the Cognac area.
Actually, the Charentes vineyard is a huge Cognac firewater production area : almost 80000 hectares of vine among which only few plots (about 2000 hectares) are set aside for growing wine, named “Vin de Pays Charentais” (VPC). Technical itineraries specifically practiced on VPC vineyard had never been studied before and were quite little-known in this region.
First part of the work consisted in sampling 50 of nearly 800 farmers who are producing VPC in the Cognac vineyard. This wine is making barely always up a smaller part of the income than the Cognac eau-de-vie. Then a questionnaire was built to register the various cultural methods used to grow vine and wine (both for Cognac firewater and VPC) and also farmer motivations to produce specifically VPC in the area. Results of this first stage of surveys show that farm structure and grape harvest treatment are criteria that distinguish 3 groups of VPC winegrowers, with different level of technical influence on their vineyards and terroir.
In a second stage of surveys, each of these groups was addressed a specific questionnaire. The objective was to segregate agronomical practices used on one hand for the VPC and on the other hand for the Cognac firewater. Afterwards, by sensible series of closed questions (dichotomous process), farmers were lead to explain why their technical itineraries change from one product to the other and from one terroir to the other. This survey so allows us to understand how a winegrower builds the decision tree which defines his specific agronomical and enological actions for the VPC.

 

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

BERNARD F.M. (1), WINTERHOLER R. (1) & THIOLLET-SCHOLTUS M. (2)

(1) IFV, Institut Français de la Vigne et du vin, 15, Rue Pierre Viala, 16130, Segonzac, France
(2) INRA UEVV, UMT Vinitera, 42, Rue Georges Morel, BP 60057, 49071 Beaucouzé, France

Contact the author

Keywords

Vin de Pays Charentais, Itinéraire technique, Enquêtes, Processus dichotomique
Vin de Pays Charentais, Technical itinerary, Surveys, Dichotomous process

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Effects of laccase from Botrytis cinerea on the oxidative degradation kinetics of the five natural grape anthocyanins

Enzymatic browning[1] is an oxidation process that occurs in many foods that increases the brown colour[2]. This problem is especially harmful in the wine industry[3]. especially when the grapes are infected by grey rot since this fung release the oxidative enzyme laccase[4]. In the particular case of red wines, the presence of laccase implies the deterioration of the red colour and can even cause the precipitation of the coloring matter (oxidasic haze)[5].

Colored hail‐nets as a tool to improve vine water status: effects on leaf gas exchange and berry quality in Italia table grape

Protecting table grape vineyards with white hail‐nets is a common practice in Southern Italy. Hail‐nets result in shading effects of 10‐20 %, depending on their density

Soil, vine, climate change – what is observed – what is expected

To evaluate the current and future impact of climate change on Viticulture requires an integrated view on a complex interacting system within the soil-plant-atmospheric continuum under continuous change. Aside of the globally observed increase in temperature in basically all viticulture regions for at least four decades, we observe several clear trends at the regional level in the ratio of precipitation to potential evapotranspiration. Additionally the recently published 6th assessment report of the IPCC (The physical science basis) shows case-dependent further expected shifts in climate patterns which will have substantial impacts on the way we will conduct viticulture in the decades to come.
Looking beyond climate developments, we observe rising temperatures in the upper soil layers which will have an impact on the distribution of microbial populations, the decay rate of organic matter or the storage capacity for carbon, thus affecting the emission of greenhouse gases (GHGs) and the viscosity of water in the soil-plant pathway, altering the transport of water. If the upper soil layers dry out faster due to less rainfall and/or increased evapotranspiration driven by higher temperatures, the spectral reflection properties of bare soil change and the transport of latent heat into the fruiting zone is increased putting a higher temperature load on the fruit. Interactions between micro-organisms in the rhizosphere and the grapevine root system are poorly understood but respond to environmental factors (such as increased soil temperatures) and the plant material (rootstock for instance), respectively the cultivation system (for example bio-organic versus conventional). This adds to an extremely complex system to manage in terms of increased resilience, adaptation to and even mitigation of climate change. Nevertheless, taken as a whole, effects on the individual expressions of wines with a given origin, seem highly likely to become more apparent.

Agronomic and oenological behavior of the minority Mandón variety on two rootstocks in the D.O. Arribes

A large population of vines of the Mandón minority red variety (synonymous with Garró) has been located in old vineyards of the D.O. Arribes (Zamora and Salamanca) to conserve and recover this minority variety. The wines made with this variety are characterized by their good structure and color, interesting harmony, an excellently low pH, with high acidity, as well as complex aromas of blue fruits and a marked and expressive minerality.

Characterization of variety-specific changes in bulk stomatal conductance in response to changes in atmospheric demand and drought stress

In wine growing regions around the world, climate change has the potential to affect vine transpiration and overall vineyard water use due to related changes in atmospheric demand and soil water deficits. Grapevines control their transpiration in response to a changing environment by regulating conductance of water through the soil-plant-atmosphere continuum. Most vineyard water use models currently estimate vine transpiration by applying generic crop coefficients to estimates of reference evapotranspiration, but this does not account for changes in vine conductance associated with water stress, nor differences thought to exist between varieties. The response of bulk stomatal conductance to daily weather variability and seasonal drought stress was studied on Cabernet-Sauvignon, Merlot, Tempranillo, Ugni blanc, and Semillon vines in a non-irrigated vineyard in Bordeaux France. Whole vine sap flow, temperature and humidity in the vine canopy, and net radiation absorbed by the vine canopy were measured on 15-minute intervals from early July through mid-September 2020, together with periodic measurement of leaf area, canopy porosity, and predawn leaf water potential. From this data, bulk stomatal conductance was calculated on 15-minute intervals, and multiple regression analysis was performed to identify key variables and their relative effect on conductance. Attention was focused on addressing multicollinearity and time-dependency in the explanatory variables and developing regression models that were readily interpretable. Variability of vapor pressure deficit over the day, and predawn water potential over the season explained much of the variability in conductance, with relative differences in response coefficients observed across the five varieties. By characterizing this conductance response, the dynamics of vine transpiration can be better parameterized in vineyard water use modeling of current and future climate scenarios.