Terroir 2008 banner
IVES 9 IVES Conference Series 9 Soils and plant material in prestigious Bordeaux vineyards impacts on yield and quality

Soils and plant material in prestigious Bordeaux vineyards impacts on yield and quality

Abstract

High resolution soil maps (scale : 1/3000) were created for seven of the most prestigious red wine producing estates in Bordeaux, covering in total approximately 400 ha. Soil type and grapevine variety were recorded for each vineyard block of these estates. A quality index was created by considering the destination of the grapes produced on each block, whether they were integrated in the first, the second or the third quality wine produced by the estate. Quality index was averaged over five vintages. Yield was measured for each vineyard block and averaged over five vintages. PEYROSOL (gravely soil) was the most frequent soil type in these estates (44% of the total mapped area). Soils with temporary water logging (REDOXISOL), heavy clay soils (PLANOSOL) and sandy-gravely soils (BRUNISOL) each covered 10% of the mapped area . Highest quality was obtained on PLANOSOLS, ARENOSOLS (sandy soils), BRUNISOLS and PEYROSOLS. Quality was low on COLLUVIOSOLS (deep soils on colluvium), LUVISOLS (leached soils) and REDUCTISOLS (soils with permanent water logging). Cabernet-Sauvignon was the dominant grapevine variety (59% of the mapped area), followed by Merlot (32%), Cabernet franc (8%) and Petit Verdot (1%). On average, the Quality Index was higher for Cabernet-Sauvignon and Merlot compared to Cabernet franc and Petit Verdot. Yield was dependent on soil type and cultivar. Comparison of soil type, cultivar and Quality Index can indicate which relationships between soil type / cultivar contribute to optimum quality performance in Bordeaux.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

VAN LEEUWEN C. (1), RENOUF V. (1,2), TREGOAT O. (3), MARGUERIT E. (1) and ROBY J.-P. (1)

(1) ENITA – ISVV, 1 Cours du Général de Gaulle, CS 40201, F-33175 Gradignan cedex
(2) Laffort, BP 17, F-33015 Bordeaux cedex 15
(3) Olivier Tregoat, Viti Dévelopment, Expertise de terroir,39 rue Antoine Miquel, F-34500 Béziers

Contact the author

Keywords

Soil type, Bordeaux, estate, quality, yield

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Vineyard microclimate alterations induced by black mulch through transcriptome reshaped the flavoromics of Cabernet Sauvignon

To alter the vineyard microclimate and produce quality wine under a semi-arid climate, black geotextile inter-row mulch (M) was applied for two vintages (2016-2017). The grapes were sampled at three growing stages to conduct the untargeted metabolome and transcriptome analysis. The upregulated genes related to photosynthesis and heat shock proteins confirmed that M weakened the total light exposure and grapes suffered severe heat stress, resulting in lower sugar and higher acids at harvest. The integration of metabolome and transcriptome analysis identified the key genes responsible for the enhancements in phenylalanine, glutamine, ornithine, arginine, and C6 alcohol concentrations, and the downward trend in ε-viniferin, anthocyanins, flavonols, terpenes and norisoprenoids concentrations in M grapes.

Mechanization of pre-flowering leaf removal under the temperate-climate conditions of Switzerland

Grapevine leaf removal (LR) in the cluster area is typically done between fruit set and cluster closure to create an unfavorable microclimate for fungal diseases, such as Botrytis cinerea and powdery mildew. Grape growers are now turning their attention to pre-flowering LR, which has additional benefits under certain conditions. When applied before flowering, LR strongly affects fruit set and thus the number of berries per cluster. It is therefore a good yield control tool, replacing time-consuming manual cluster thinning (Poni et al. 2006). It also improves berry structure, that is, skin thickness, skin-to-pulp ratio, and berry composition (total soluble solids, titratable acidity, and polyphenols) (Palliotti et al. 2012; Komm and Moyer 2015). By exacerbating competition for assimilates between reproductive and vegetative organs, pre-flowering LR also poses some risks. Excessive yield loss at the same year’s harvest due to a too low fruit set rate is the main concern: intensive pre-flowering LR (100% of the cluster area) can induce up to 50% yield loss in potted vines (Poni et al. 2005). Other parameters, such as cool climatic conditions during flowering, also affect fruit set rate and make it difficult to predict potential yield at harvest. Repeated and overly intensive preflowering LR can have repercussions over time and induce a decline in bud fruiting and plant vigor (Risco et al. 2014).

Transforming winemaking waste: grape pomace as a sustainable source of bioactive compounds

Grapevines (Vitis vinifera L.) are plants of great economic importance, with over 80% of grape production dedicated to wine production, yielding more than 258 million hectoliters annually [1].

Climate change and economic challenge – strategies for vinegrowers, winemakers and wine estates

For wine areas around the world, nature and climate are becoming factors of production whose endowment becomes a stake beyond the traditional economic factors: labor, capital, land. They strongly influence agricultural and environmental conditions for production.

Effect of different packaging materials on table grape quality preservation during cold storage

During cold storage, grapes undergo changes that affect their visual, mechanical, and organoleptic properties, potentially impacting quality and negatively influencing consumer acceptance. Key parameters include uniform color, crunchiness, and flesh consistency. We evaluated the influence of two distinct packaging methods on the chromatic characteristics, hardness, and pedicel detachment resistance of fourteen new seedless white and red grape varieties during cold storage. These factors are crucial for maintaining the quality of the product and extending its shelf-life. The novel grape varieties were obtained through a breeding program at CREA-VE of Turi, Southern Italy.