Terroir 2008 banner
IVES 9 IVES Conference Series 9 Soils and plant material in prestigious Bordeaux vineyards impacts on yield and quality

Soils and plant material in prestigious Bordeaux vineyards impacts on yield and quality

Abstract

High resolution soil maps (scale : 1/3000) were created for seven of the most prestigious red wine producing estates in Bordeaux, covering in total approximately 400 ha. Soil type and grapevine variety were recorded for each vineyard block of these estates. A quality index was created by considering the destination of the grapes produced on each block, whether they were integrated in the first, the second or the third quality wine produced by the estate. Quality index was averaged over five vintages. Yield was measured for each vineyard block and averaged over five vintages. PEYROSOL (gravely soil) was the most frequent soil type in these estates (44% of the total mapped area). Soils with temporary water logging (REDOXISOL), heavy clay soils (PLANOSOL) and sandy-gravely soils (BRUNISOL) each covered 10% of the mapped area . Highest quality was obtained on PLANOSOLS, ARENOSOLS (sandy soils), BRUNISOLS and PEYROSOLS. Quality was low on COLLUVIOSOLS (deep soils on colluvium), LUVISOLS (leached soils) and REDUCTISOLS (soils with permanent water logging). Cabernet-Sauvignon was the dominant grapevine variety (59% of the mapped area), followed by Merlot (32%), Cabernet franc (8%) and Petit Verdot (1%). On average, the Quality Index was higher for Cabernet-Sauvignon and Merlot compared to Cabernet franc and Petit Verdot. Yield was dependent on soil type and cultivar. Comparison of soil type, cultivar and Quality Index can indicate which relationships between soil type / cultivar contribute to optimum quality performance in Bordeaux.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

VAN LEEUWEN C. (1), RENOUF V. (1,2), TREGOAT O. (3), MARGUERIT E. (1) and ROBY J.-P. (1)

(1) ENITA – ISVV, 1 Cours du Général de Gaulle, CS 40201, F-33175 Gradignan cedex
(2) Laffort, BP 17, F-33015 Bordeaux cedex 15
(3) Olivier Tregoat, Viti Dévelopment, Expertise de terroir,39 rue Antoine Miquel, F-34500 Béziers

Contact the author

Keywords

Soil type, Bordeaux, estate, quality, yield

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Experimental vinification of withered grapes of Vitis vinifera “Muscat of Alexandria”

The objective of the present work is to investigate wine produced from dehydrated grapes and vinified according to classical Roman manuals.

METHODS – Locally produced Muscat of Alexandria’s grapes were used for the sweet wine production, grown in the experimental vineyard of Instituto Superior de Agronomia (Lisbon, Portugal). The grapes were harvested manually slightly over-ripe and subjected to greenhouse drying. After 7-10 days dried grapes were transported to an experimental winery for various operations (e.g., grape weighing, sorting, crushing/destemming). Several maceration protocols were used comprising the addition of saltwater and white wine to whole bunches or destemmed grapes. Fermentation was conducted with the addition of commercial yeast. The standard physico-chemical parameters of wines were determined according to the OIV standards.

Relevance of an immunoassay test for rapid detection of Botrytis cinerea in ‘Ugni blanc’ musts and wines

A new immunoassay kit, called Botrytis Lateral Flow Device has been tested to detect Botrytis cinerea on musts and wines. The comparison of the immunoassay result with the quantitative analysis of usual markers (gluconic acid, sugars and polyols) showed the relevance of this innovative tool.

Exploring microbial interactions between Saccharomyces cerevisiae and non-Saccharomyces yeast starters in vinification

Winemaking is a complex microbial process involving the co-existence and interactions of various microorganisms [1].

Wine by-products valorisation by green chemistry methods: Impact of the extraction process on the structure, functionalities and activity of the extracted molecules

Wine by-products valorisation by green chemistry methods: Impact of the extraction process on the structure, functionalities and activity of the extracted molecules

Wood from barrique: release of phenolic compounds and permeability to oxygen

Chemical and sensory changes occurring in red wine during ageing in oak barrique are due to the slow and gradual entrance of oxygen along with a release of ellagic tannin from the wood. Though oxygen can enter the cask through the bunghole, it is not clear the role of permeation through the wood staves as well as the amount of oxygen entering by permeation. The distribution of the released ellagic tannins in the wine ageing is also unknown. The oxygen passing through the bunghole may have a different wine ageing effect compared to the oxygen permeating through the wooden staves owing to the uneven ellagic tannin concentration throughout the wine.