Terroir 2008 banner
IVES 9 IVES Conference Series 9 Soils and plant material in prestigious Bordeaux vineyards impacts on yield and quality

Soils and plant material in prestigious Bordeaux vineyards impacts on yield and quality

Abstract

High resolution soil maps (scale : 1/3000) were created for seven of the most prestigious red wine producing estates in Bordeaux, covering in total approximately 400 ha. Soil type and grapevine variety were recorded for each vineyard block of these estates. A quality index was created by considering the destination of the grapes produced on each block, whether they were integrated in the first, the second or the third quality wine produced by the estate. Quality index was averaged over five vintages. Yield was measured for each vineyard block and averaged over five vintages. PEYROSOL (gravely soil) was the most frequent soil type in these estates (44% of the total mapped area). Soils with temporary water logging (REDOXISOL), heavy clay soils (PLANOSOL) and sandy-gravely soils (BRUNISOL) each covered 10% of the mapped area . Highest quality was obtained on PLANOSOLS, ARENOSOLS (sandy soils), BRUNISOLS and PEYROSOLS. Quality was low on COLLUVIOSOLS (deep soils on colluvium), LUVISOLS (leached soils) and REDUCTISOLS (soils with permanent water logging). Cabernet-Sauvignon was the dominant grapevine variety (59% of the mapped area), followed by Merlot (32%), Cabernet franc (8%) and Petit Verdot (1%). On average, the Quality Index was higher for Cabernet-Sauvignon and Merlot compared to Cabernet franc and Petit Verdot. Yield was dependent on soil type and cultivar. Comparison of soil type, cultivar and Quality Index can indicate which relationships between soil type / cultivar contribute to optimum quality performance in Bordeaux.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

VAN LEEUWEN C. (1), RENOUF V. (1,2), TREGOAT O. (3), MARGUERIT E. (1) and ROBY J.-P. (1)

(1) ENITA – ISVV, 1 Cours du Général de Gaulle, CS 40201, F-33175 Gradignan cedex
(2) Laffort, BP 17, F-33015 Bordeaux cedex 15
(3) Olivier Tregoat, Viti Dévelopment, Expertise de terroir,39 rue Antoine Miquel, F-34500 Béziers

Contact the author

Keywords

Soil type, Bordeaux, estate, quality, yield

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Partitioning of seasonal above‐ground biomass of four vineyard-grown varieties: development of a modelling framework to infer temperature-rate response functions

Aims: Forecasting the biomass allocation among source and sinks organs is crucial to better understand how grapevines control the distribution of acquired resources and has a great meaning in term of making decisions about agricultural practices in vineyards. Modelling plant growth and development is one of prediction approaches that play this role when it concerns growth rates in response to variation in environmental conditions

Study of the Interactions between High Molecular Weight Salivary Proteins and Red Wine Flavanols.

Astringency has been defined by the American Society for Testing Materials as “the complex of sensations due to shrinking, drawing or puckering of the epithelium as a result of exposure to substances such as alums or tannins”. Regarding the importance of astringency in wine consumer acceptance, elucidating the molecular mechanisms underpinning this complex sensation represents an important goal for scientists. Although different mechanisms have been described (Gibbins & Carpenter, 2013), the salivary protein precipitation is still the most accepted theory. According to this, wine astringency perceived in the oral cavity is originally attributed to the interaction and subsequence precipitation of salivary proteins by wine tannins –mainly flavanols–.

The bottleneck/cork interface: A key parameter for wine aging in bottle

The shelf life of wine is a major concern for the wine industry. This is particularly true for wines intended for long cellaring, which are supposed to reach their peak after an ageing period ranging from a few months to several years, or even decades. Low, controlled oxygen inputs through the closure system are generally necessary for the wine to evolve towards its optimum organoleptic characteristics. Our previous studies have already shown that the interface between the cork and the bottleneck plays a crucial role in the transfer of oxygen into the bottled wine.

Sensory and chemical effects of postharvest grape cooling on wine quality

Wine cellars are affected by seasonally fluctuating workloads and face challenges especially in the harvest period connected to the required timely processing of the harvested grapes.

Aspects concernant les relations entre quelques composantes de la biomasse viticole, en fonction de l’offre des ressources écologiques

Ecological resources represent vegetation factors, or even production factors, in quantitative expression. These, used by plants, transformed and organized according to their genetic program, become the material components of biomass. Subsequently, the ecological resources can be used as synthetic indicators of the ecological supply, necessary for the analysis of favorability for the understanding of ecosystems.