Terroir 2008 banner
IVES 9 IVES Conference Series 9 Soils and plant material in prestigious Bordeaux vineyards impacts on yield and quality

Soils and plant material in prestigious Bordeaux vineyards impacts on yield and quality

Abstract

High resolution soil maps (scale : 1/3000) were created for seven of the most prestigious red wine producing estates in Bordeaux, covering in total approximately 400 ha. Soil type and grapevine variety were recorded for each vineyard block of these estates. A quality index was created by considering the destination of the grapes produced on each block, whether they were integrated in the first, the second or the third quality wine produced by the estate. Quality index was averaged over five vintages. Yield was measured for each vineyard block and averaged over five vintages. PEYROSOL (gravely soil) was the most frequent soil type in these estates (44% of the total mapped area). Soils with temporary water logging (REDOXISOL), heavy clay soils (PLANOSOL) and sandy-gravely soils (BRUNISOL) each covered 10% of the mapped area . Highest quality was obtained on PLANOSOLS, ARENOSOLS (sandy soils), BRUNISOLS and PEYROSOLS. Quality was low on COLLUVIOSOLS (deep soils on colluvium), LUVISOLS (leached soils) and REDUCTISOLS (soils with permanent water logging). Cabernet-Sauvignon was the dominant grapevine variety (59% of the mapped area), followed by Merlot (32%), Cabernet franc (8%) and Petit Verdot (1%). On average, the Quality Index was higher for Cabernet-Sauvignon and Merlot compared to Cabernet franc and Petit Verdot. Yield was dependent on soil type and cultivar. Comparison of soil type, cultivar and Quality Index can indicate which relationships between soil type / cultivar contribute to optimum quality performance in Bordeaux.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

VAN LEEUWEN C. (1), RENOUF V. (1,2), TREGOAT O. (3), MARGUERIT E. (1) and ROBY J.-P. (1)

(1) ENITA – ISVV, 1 Cours du Général de Gaulle, CS 40201, F-33175 Gradignan cedex
(2) Laffort, BP 17, F-33015 Bordeaux cedex 15
(3) Olivier Tregoat, Viti Dévelopment, Expertise de terroir,39 rue Antoine Miquel, F-34500 Béziers

Contact the author

Keywords

Soil type, Bordeaux, estate, quality, yield

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

NADES extraction of anthocyanins derivatives from grape pomace

Grape pomace is one of the main by-products generated after pressing in wine-making. It’s valorization through the extraction of bioactive compounds is the answer for the development of sustainable processes. Nevertheless, in the recovery of anthocyanins derivatives, the extraction stage continues to be a limiting step. The nature of the sample and the type of solvent determine the efficiency of the process

Cultivation site effect on the quality of Moscato di Pantelleria

n 1997 and 1999, sixteen cultivation sites of cv. Muscat of Alexandria different for pedological conditions, altitude and exposition were selected through all Pantelleria isle. In 1997 in each site

Effect of different canopy managements on microclimate and carbon allocation in Vitis vinifera cv Chardonnay

Climate change strongly affects the wine-growing sector which increasingly requires in situ adaptation strategies aimed at preserving the sustainability of production. Investigating microclimate becomes crucial in comprehending environmental pressures on plants. The microclimatic investigation conducted in the Orvieto PDO (central Italy) allowed us to highlight the climatic dynamics occurring in the last 25 years and the frequency and intensity of abiotic stresses. Two management strategies for the canopy were identified: early defoliation (ELR) and foliar application of Basalt Flour ® (FB) compared to the ordinary management (C) of the company (bud selection and topping). The effects on plant vigour indices (LAI), resource allocation in terms of carbon stored in the above-ground organs of the vine, and the microclimate of the canopy and the berry were evaluated. In particular, microclimate was evaluated through a network of sensors connected wirelessly (Wireless Sensor Network), dedicated to collecting information on temperature and humidity in the canopy and clusters.

Tuning the pH during the fermentation has a strong effect on the wine protein composition and the stability of the resulting white wines

Previous results have shown the impact of the pH on the stability of white wine proteins. In a context of global warming that implies increases in ethanol content and pH

Effect of row direction in the upper part of the hillside vineyard of Somló, Hungary

Hillside vineyards have a great potential to produce world class wines. The unique microclimate lead to the production of rich, flavory wines.