Terroir 2008 banner
IVES 9 IVES Conference Series 9 Vineyard soil mapping to optimise wine quality: from ‘terroir’ characterisation to vineyard management

Vineyard soil mapping to optimise wine quality: from ‘terroir’ characterisation to vineyard management

Abstract

In this study, a soil mapping methodology at subplot level (scale 1:5000) for vineyard soils was developed. The aim of this mapping method was to establish mapping units, which could be used as basic units for ‘terroir’ characterisation and vineyard management (precision viticulture). The developed methodology applied most of the criteria of the Soil Inventory of Catalonia and the Soil Survey Manual of the Department of Agriculture of United States, at very-detailed scale. The suitability of soil maps as a tool for definition of ‘terroir’ units and management units are discussed, according to our experiences. The method followed allowed good soil type discrimination at vineyard subplot level, differentiating zones with distinct soil properties important to vineyard development. However, the variability within the soil mapping unit could not be ascertained by this method. Significant differences in grape quality were found between distinct soil mapping units. Moreover, the application of variable rates of fertilizer at vine subplot level was possible using thematic maps calculated from soil maps, by means of Geographic Information Systems. 

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type: Article

Authors

Josep Miquel UBALDE (1), Xavier SORT (1), Rosa Maria POCH (2) and Miquel PORTA (1)

(1) Dept. of Viticulture, Miguel Torres Winery, Miquel Torres i Carbó 6, 08720 Vilafranca del Penedès, Spain
(2) Dept. of Environment and Soil Science, University of Lleida, Rovira Roure 191, 25198 Lleida, Spain 

Contact the author

Keywords

soil mapping, viticultural zoning, terroir unit, management unit, precision viticulture

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Prefermentative CO2 saturation of grape must to obtaining white wines with low SO2 content

The objective this work has been study the possibility of partially or completely replacing sulphur in the winemaking of white wines through the use of the prefermentative saturation of musts with CO2.

Adaptability of grapevines to climate change: characterization of phenology and sugar accumulation of 50 varieties, under hot climate conditions

Climate is the major factor influencing the dynamics of the vegetative cycle and can determine the timing of phenological periods. Knowledge of the phenology of varieties, their chronological duration, and thermal requirements, allows not only for the better management of interventions in the vineyard, but also to predict the varieties’ behaviour in a scenario of climate change, giving the wine producer the possibility of selecting the grape varieties that are best adapted to the climatic conditions of a certain terroir. In 2014, Symington Family Estates, Vinhos, established two grape variety libraries in two different places with distinctive climate conditions (Douro Superior, and Cima Corgo), with the commitment of contributing to a deeper agronomic and oenological understanding of some grape varieties, in hot climate conditions. In these research vineyards are represented local varieties that are important in the regional and national viticulture, but also others that have over time been forgotten — as well as five international reference cultivars. From 2017 to 2021, phenological observations have been made three times a week, following a defined protocol, to determine the average dates of budbreak, flowering and veraison. With the climate data of each location, the thermal requirements of each variety and the chronological duration of each phase have been calculated. During maturation, berry samples have been gathered weekly to study the dynamics of sugar accumulation, between other parameters. The data was analysed applying phenological and sugar accumulation models available in literature. The results obtained show significant differences between the varieties over several parameters, from the chronological duration and thermal requirements to complete the various stages of development, to the differences between the two locations, confirming the influence of the climate on phenology and the stages of maturation, in these specific conditions.

Uncovering the effectiveness of vineyard techniques used to delay ripening through meta-analysis

One of the most concerning trends associated with increasing heat and water stress is advanced ripening of grapes, which leads to harvesting fruit at higher sugar concentrations but lacking optimal phenolic (i.e. color and mouthfeel) and aromatic maturity. Mitigation techniques for this phenomenon have been studied for many years and practices to delay sugar accumulation have been identified, including antitranspirants, delayed pruning and late-source-limitation techniques. Evaluation of the efficacy of these vineyard practices has occurred across a wide range of environments, vintages, varieties and growing conditions. To assess the broader efficacy of these three vineyard practices, which are easy-to-implement and cost-effective, a meta-analytic approach was adopted using data retrieved from 43 original studies.

Carbon sequestration in vineyard soils: biomass utilization in a climate change scenario–the SUSTAIN project

The SUSTAIN project aims at assessing the soil organic carbon (SOC) stock and vulnerability in vineyard soils under a climate change scenario.

Grassland and patch scale diversity in supporting avian diversity and potential ecosystem services

The composition and structure of vineyard landscapes significantly affect bird communities and the ecosystem services they provide in agriculture.