Terroir 2008 banner
IVES 9 IVES Conference Series 9 Vineyard soil mapping to optimise wine quality: from ‘terroir’ characterisation to vineyard management

Vineyard soil mapping to optimise wine quality: from ‘terroir’ characterisation to vineyard management

Abstract

In this study, a soil mapping methodology at subplot level (scale 1:5000) for vineyard soils was developed. The aim of this mapping method was to establish mapping units, which could be used as basic units for ‘terroir’ characterisation and vineyard management (precision viticulture). The developed methodology applied most of the criteria of the Soil Inventory of Catalonia and the Soil Survey Manual of the Department of Agriculture of United States, at very-detailed scale. The suitability of soil maps as a tool for definition of ‘terroir’ units and management units are discussed, according to our experiences. The method followed allowed good soil type discrimination at vineyard subplot level, differentiating zones with distinct soil properties important to vineyard development. However, the variability within the soil mapping unit could not be ascertained by this method. Significant differences in grape quality were found between distinct soil mapping units. Moreover, the application of variable rates of fertilizer at vine subplot level was possible using thematic maps calculated from soil maps, by means of Geographic Information Systems. 

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type: Article

Authors

Josep Miquel UBALDE (1), Xavier SORT (1), Rosa Maria POCH (2) and Miquel PORTA (1)

(1) Dept. of Viticulture, Miguel Torres Winery, Miquel Torres i Carbó 6, 08720 Vilafranca del Penedès, Spain
(2) Dept. of Environment and Soil Science, University of Lleida, Rovira Roure 191, 25198 Lleida, Spain 

Contact the author

Keywords

soil mapping, viticultural zoning, terroir unit, management unit, precision viticulture

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

A research agenda for terroir: an empirical, international expert study

Aim: Terroir is a French concept relating the qualities and quality of agricultural products to their physical and socio-cultural place of origin. It is increasingly used by business and policymakers as a marketing technique to provide economic benefits (e.g. Lenglet, 2014; Wine Australia, 2015), and to potentially preserve cultural heritage (e.g. Bauer, 2009) and the environment (e.g. Bowen, 2010)

Sensory changes in wines associated with the ripening of Grenache grapes from vineyards in different climatic zones

Climate change is introducing a high variability on grape ripening, causing uncertainty, excessive spending on pesticides and eventually frustrating results in terms of the quality of the vintage, with the increasingly frequent appearance of aromatic problems associated with overripeness, raisining and greenness, which sometimes only appear in bottled wines.

SENSORY DEFINITION OF A TECHNICAL UNAVOIDABLE TRANSFER OF AROMA COMPOUNDS VIA SEALING IN A BOTTLING LINE IN ORDER TO PREVENT PROSECUTION DUE TO FRAUDULENT AROMATIZATION OF A SUBSEQUENTLY FILLED WINE

In 2020, 12% of all bottled German wines were aromatized, which may increase further due to rising popularity of dealcoholized wines. As sealing polymers of a bottling line absorb aroma compounds and may release them into regular wines in the next filling¹, this unintentional carry-over bears the risk to violate the legal ban of any aromatization of regular wine. However, following EU legislation, German food control authorities accept a technical unavoidable transfer of aroma compounds, if this is of no sensory significance.

Effects of water and nitrogen uptake, and soil temperature, on vine development, berry ripening and wine quality of Cabernet-Sauvignon, Cabernet franc and Merlot (Saint-Emilion, 1997)

Wine quality depends largely on berry ripening conditions in relation to soil and climat. The influence of the soil has been studied in Bordeaux since the early Seventies (SEGUIN, 1970; DUTEAU et al., 1981; VAN LEEUWEN, 1991; VAN LEEUWEN et SEGUIN, 1994) and, more recently, in the Val de Loire (MORLAT, 1989), the Alsace (LEBON, 1993) and the Costières de Nîmes regions (MARTIN, 1995).

“Silex vitioeno module porte-greffe”: an information system to gather experimental results on grapevine rootstocks

Maintaining stable yields and quality over time is a major challenge for the wine industry. Within the context of climate change, the choice of the rootstock is an important lever for adapting to current and future climatic conditions. Within a vineyard, the choice of the rootstock depends on the environmental conditions, the scion variety and the objectives of production. Many experimental data on the performances of rootstock already exist and can guide our decision-making.