Terroir 2008 banner
IVES 9 IVES Conference Series 9 Vineyard soil mapping to optimise wine quality: from ‘terroir’ characterisation to vineyard management

Vineyard soil mapping to optimise wine quality: from ‘terroir’ characterisation to vineyard management

Abstract

In this study, a soil mapping methodology at subplot level (scale 1:5000) for vineyard soils was developed. The aim of this mapping method was to establish mapping units, which could be used as basic units for ‘terroir’ characterisation and vineyard management (precision viticulture). The developed methodology applied most of the criteria of the Soil Inventory of Catalonia and the Soil Survey Manual of the Department of Agriculture of United States, at very-detailed scale. The suitability of soil maps as a tool for definition of ‘terroir’ units and management units are discussed, according to our experiences. The method followed allowed good soil type discrimination at vineyard subplot level, differentiating zones with distinct soil properties important to vineyard development. However, the variability within the soil mapping unit could not be ascertained by this method. Significant differences in grape quality were found between distinct soil mapping units. Moreover, the application of variable rates of fertilizer at vine subplot level was possible using thematic maps calculated from soil maps, by means of Geographic Information Systems. 

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type: Article

Authors

Josep Miquel UBALDE (1), Xavier SORT (1), Rosa Maria POCH (2) and Miquel PORTA (1)

(1) Dept. of Viticulture, Miguel Torres Winery, Miquel Torres i Carbó 6, 08720 Vilafranca del Penedès, Spain
(2) Dept. of Environment and Soil Science, University of Lleida, Rovira Roure 191, 25198 Lleida, Spain 

Contact the author

Keywords

soil mapping, viticultural zoning, terroir unit, management unit, precision viticulture

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Challenges and opportunities for increasing organic carbon in vineyard soils: perspectives of extension specialists

Increasing soil organic carbon (SOC) in vineyards enhances soil health with associated benefits for climate change resilience and mitigation.

Drought responses of grapevine cultivars under different environments

Using grapevine genetic diversity is one of the strategies to adapt viticulture to climate change. In this sense, assessing the plasticity of cultivars in their responses to environmental conditions is essential. For this purpose, the drought tolerance of Grenache, Tempranillo and Semillon cultivars grafted onto SO4 was evaluated at two experimental vineyards, one located in Valencia (Spain) and the other in Bordeaux (France). This was done by assessing gas exchange parameters, water relations and leaf hydraulic traits at the end of the season.

Chemical composition of press and free-run wines from three vintages and Bordeaux grape varieties. A comprehensive analysis

Press wines play a crucial role in red winemaking, representing up to 15% of the final blend [1]. Optimizing their value is essential both economically and for maintaining wine identity, especially given evolving climatic and societal challenges. However, little recent research exists on their composition.

NOVEL BENZENETHIOLS WITH PHENOLS CAUSE ASHY, SMOKE FLAVOR PERCEPTION IN RED WINES

Smoke impacts on wines are becoming a worldwide problem; the size and severity of wildfires increasing due to influences from changing climates.¹ For over a century, wines have been known to have a unique issue of absorbing chemical compounds derived from wildfire smoke wherein the flavor of the subsequent wine becomes ashy, rubbery, campfire-like, and smoky.² The economic impacts of a smoke-impacted wine can last for years depending on the grape varietal, costing Oregon and Washington states in the United States over a billion dollars from the 2020 wildfires, as an example.³ While years of research have indicated elevated concentrations of smoke-related compounds, such as guaiacol and syringol, in wines after smoke events, unfortunately, replicating the sensory experience using smoke-associated phenols has not had much success.⁴

YEAST LEES OBTAINED AFTER STARMERELLA BACILLARIS FERMENTATION AS A SOURCE OF POTENTIAL COMPOUNDS TO IMPROVE SUSTAINABILITY IN WINE- MAKING

The yeast residue left over after wine-making, known as wine yeast lees, is a source of various compounds that are of interest for wine and food industry. In winemaking, yeast-derived glycocompounds and proteins represent an example of circular economy approach since they have been proven to reduce the need for bentonite and animal-based fining agents. This leads to a reduced environmental impact in the stabilization and fining processes in winemaking. (de Iseppi et al., 2020, 2021).