Terroir 2008 banner
IVES 9 IVES Conference Series 9 Vineyard soil mapping to optimise wine quality: from ‘terroir’ characterisation to vineyard management

Vineyard soil mapping to optimise wine quality: from ‘terroir’ characterisation to vineyard management

Abstract

In this study, a soil mapping methodology at subplot level (scale 1:5000) for vineyard soils was developed. The aim of this mapping method was to establish mapping units, which could be used as basic units for ‘terroir’ characterisation and vineyard management (precision viticulture). The developed methodology applied most of the criteria of the Soil Inventory of Catalonia and the Soil Survey Manual of the Department of Agriculture of United States, at very-detailed scale. The suitability of soil maps as a tool for definition of ‘terroir’ units and management units are discussed, according to our experiences. The method followed allowed good soil type discrimination at vineyard subplot level, differentiating zones with distinct soil properties important to vineyard development. However, the variability within the soil mapping unit could not be ascertained by this method. Significant differences in grape quality were found between distinct soil mapping units. Moreover, the application of variable rates of fertilizer at vine subplot level was possible using thematic maps calculated from soil maps, by means of Geographic Information Systems. 

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type: Article

Authors

Josep Miquel UBALDE (1), Xavier SORT (1), Rosa Maria POCH (2) and Miquel PORTA (1)

(1) Dept. of Viticulture, Miguel Torres Winery, Miquel Torres i Carbó 6, 08720 Vilafranca del Penedès, Spain
(2) Dept. of Environment and Soil Science, University of Lleida, Rovira Roure 191, 25198 Lleida, Spain 

Contact the author

Keywords

soil mapping, viticultural zoning, terroir unit, management unit, precision viticulture

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Setting up new tools to reduce the duration of the grapevine breeding process : Mercier experience

Since some years, the French wine sector faces strategical challenges, all linked to climate change. Multiple issues have been observed like diseases development, early frost, drought, change in the precocity and maturity of grapes, each one resulting in loss of productivity and yield. In France, the varieties proposed today by nurseries are historical varieties that are not well adapted to those changes. Therefore, Mercier Frères, one of the leading grapevine nursery, has decided to start its own research programs, with the help of its laboratory Novatech, to answer the growing demand for new grapevine varieties.

Better understand the soil wet bulb formation with subsurface or aerial drip irrigation in viticulture

The gradual change in rainfall patterns experienced in the south of France vineyards, especially around the Mediterranean sea, means that the vines are increasingly subject to summer drought. The winegrowers developped the use of irrigation techniques to ensure the maintenance of competitive yields in the production of wines under Protected Geographical Indication label. In practice, drip irrigation pipes can be installed above the ground or buried into the soil as well as at different distances from the vine row. The objective of this study was to examine the profiles of the wet bulbs of the soil obtained from two drip irrigation systems : aerial drip located under the vine row and subsurface drip placed in the middle of the inter-row. This experiment took place over two consecutive seasons (2020-2021) on a 3.4 ha Viognier plot in the Mediterranean region (PGI Oc, France) on sandy clay soil. The annual rainfalls were less than 400 mm. Soil water content probes were installed at different depths (20 – 40 – 60 – 80 cm) and at different lateralities from the vine row (30 – 60 – 90 – 120 cm) to control the formation of the soil wet bulb during irrigation. The mapping and the analysis of the data allowed a better understanding and differentiation of the water percolation when irrigating with subsurface or aerial drip. For the same amount of water and without differences of vine water status, it is shown that in a subsurface drip irrigation situation, the size of the wet bulb formed is larger than in aerial drip irrigation system.

Sustainability and resilience in the wine sector

Resilience and sustainability are two fundamental concepts in the sustainable development of the wine sector, being closely interconnected.

Study of the colour and phenolic evolution of three different tannin/anthocyanin ratios over time in a model wine

Phenolic compounds are important quality indicators in red wine. A large number of polyphenols play an important role in wine development, contributing to the colour and the sensory perception of the wines. Anthocyanins are the pigments responsible for the colour in young red wines while tannins are the principal contributors to the bitterness and the astringency of the wines. Wine polyphenols are considered more complex molecules than grape phenolics, due to the enormous number of chemical reactions which take place during the entire winemaking process and storage, forming more stable compounds.

Ground vs trellis in rootstock cane production fields

Context and purpose of the study. The vine nursery sector is undergoing a transformation to meet growing environmental and sanitary demands.