Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Climate component of terroir 9 A comparative analysis of regions worldwide with Pinot noir

A comparative analysis of regions worldwide with Pinot noir

Abstract

This study examines the growing season climates of selected wine regions worldwide that have significant areas under Pinot noir. It uses the normalized climatic data for the 1971-2000 period to analyze those climatic factors that are influential on the production of quality wines in cool climate regions and provides a comparison with those of Burgundy. The results show that the regions fall into broad groups based on various combinations of climatic criteria, but principally those that pertain to the daytime maximum temperature, precipitation totals, the diurnal temperature range and the mean temperature during the ripening period.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Tony. B. SHAW

Department of Geography & Cool Climate Oenology and Viticulture InstituteBrock University, St. Catharines, Ontario L2S 3A1 Canada

Contact the author

Keywords

Pinot noir, climates, regions

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Rootstocks and climate change: adding up means learning faster

In this video recording of the IVES science meeting 2025, Gonzaga Santesteban (Public University of Navarra, Pamplona, Spain) speaks about rootstocks, climate change and meta-analysis. This presentation is based on an original article accessible for free on OENO One.

Climate change impacts: a multi-stress issue

With the aim of producing premium wines, it is admitted that moderate environmental stresses may contribute to the accumulation of compounds of interest in grapes. However the ongoing climate change, with the appearance of more limiting conditions of production is a major concern for the wine industry economic. Will it be possible to maintain the vineyards in place, to preserve the current grape varieties and how should we anticipate the adaptation measures to ensure the sustainability of vineyards? In this context, the question of the responses and adaptation of grapevine to abiotic stresses becomes a major scientific issue to tackle. An abiotic stress can be defined as the effect of a specific factor of the physico-chemical environment of the plants (temperature, availability of water and minerals, light, etc.) which reduces growth, and for a crop such as the vine, the yield, the composition of the fruits and the sustainability of the plants. Water stress is in many minds, but a systemic vision is essential for at least two reasons. The first reason is that in natural environments, a single factor is rarely limiting, and plants have to deal with a combination of constraints, as for example heat and drought, both in time and at a given time. The second reason is that plants, including grapevine, have central mechanisms of stress responses, as redox regulatory pathways, that play an important role in adaptation and survival. Here we will review the most recent studies dealing with this issue to provide a better understanding of the grapevine responses to a combination of environmental constraints and of the underlying regulatory pathways, which may be very helpful to design more adapted solutions to cope with climate change.

Oenological performances of new white grape varieties

The wine industry works to minimize pesticides and adapt to climate change. Breeding programs have developed disease-resistant grape varieties, particularly against downy and powdery mildew, to minimize pesticide applications [1]. However, their enological potential remains underexplored.

Unraveling the complexity of high-temperature tolerance by characterizing key players of heat stress response in grapevine

Grapevine (Vitis spp.) is greatly influenced by climatic conditions and its economic value is therefore directly linked to environmental factors. Among these factors, temperature plays a critical role in vine phenology and fruit composition. In such conditions, elucidating the mechanisms employed by the vine to cope with heat waves becomes urgent. For the past few years, our research team has been producing molecular and metabolic data to highlight the molecular players involved in the response of the vine and the fruit to high temperatures [1]. Some of these temperature-sensitive genes are currently undergoing characterization using transgenesis approaches coupled or not with genome editing, taking advantage of the Microvine genotype [2].

Whole bunch fermentation: adding complexity, or just making ‘green’ wine?

Certain grape varieties contain negligible levels of isobutyl methoxypyrazine (IBMP) in grapes. However, it has long been known that grape stems