Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Climate component of terroir 9 Relationships between the Fregoni bioclimatic index (IF) and wine quality

Relationships between the Fregoni bioclimatic index (IF) and wine quality

Abstract

The Fregoni bioclimatic index (IF) considers the daily temperature range during the ripening month and the number of days with temperature below 10°C. The world areas characterized by large daily temperature ranges produce, as a rule, great wines, like for example Napa and Sonoma valleys in California, Chile and the Cape province in South Africa. A worldwide survey was carried out in order to assess correlations between the IF and the wine quality. The wine quality, for the same wine type during different vintage years, was expressed as hedonic evaluation (by a score up to 100). Spain, Switzerland, Germany, Romania, Canada, Chile and South Africa were investigated. The IF (vintages 2000-2005) ranged from 300 to 4,000 in the Valencia region, while in Navarra (vintages 1996-2005) from 300 to 3,400. In Germany the IF (vintages 1996-2005) ranged from 300 to 6,500, in Switzerland from 1,300 to 10,800, in Romania (vintages 1990 – 2005) from 200 to 7,000, in Canada (vintages 1996-2005) from 300 to 2,000, in Chile (vintages from 1999 to 2004) from 7,600 to 16,200, in South Africa (vintages 1994-2002) from 260 to 470. In cool climate countries like Germany and Switzerland, the best vintages corresponded to intermediate IF values (2,000-3,000, in Germany, and 5,000-6,000 in Switzerland), while in a warmer country like South Africa the best vintages corresponded, as a rule, to the highest IF (400).

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type: Article

Authors

Luigi BAVARESCO, Silvia PEZZUTTO, Matteo GATTI, Mario FREGONI

Istituto di Frutti-Viticoltura, Università Cattolica S. Cuore, I-29100 Piacenza, Italia

Contact the author

Keywords

temperature, ripening, wine quality, climate

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Post-plant nematicide timing for northern root-knot nematode in Washington wine grapes

Vigor declines in older vineyards and poor vine establishment in replant situations have been attributed to plant-parasitic nematodes. The northern root-knot nematode, Meloidogyne hapla, is the most prevalent plant-parasitic nematode species found in Washington wine grape vineyards. Management for nematodes in established vineyards is limited to the application of post-plant nematicides. We are evaluating new nematicides that are currently not registered in grape for their efficacy in controlling M. hapla and a part of that evaluation includes improving the alignment of nematicide application timing with the vulnerable second-stage juvenile (J2) life stage of M. hapla.

Pro-active management of grapevine trunk diseases by means of sanitation in nurseries

Several trunk diseases cause decline and premature dieback of grapevines. In vineyards, these pathogens gain entry into plants through unprotected wounds. Wounds are also frequently infected during the propagation stages. The pathogens survive in infected plants in a latent form and cause disease in older grapevines or in plants that are

Monitoring water deficit in vineyards by means of Red and Infrared measurements

Vineyard water availability is one of the most important variables both in plant’s production and wine quality, once it regulates several processes, among which the stomata activity. To avoid water deficit, wine producers introduced artificial irrigation in their vineyard, using a semi-empirical process to calculate water amount.

Cartes thématiques: applications au vignoble champenois

Quel est l’intérêt des cartes en viticulture? Celles-ci répondent à plusieurs usages.
Formalisation au sein d’un référentiel codifié et normalisé de la connaissance relative au milieu, aux observations biologiques et aux pratiques culturales.

Effects of soil and climate on wine style in Stellenbosch: Sauvignon blanc

Une étude a été menée pendant neuf ans sur deux vignes non-irriguées de Sauvignon blanc commercialisés, plantées à différentes localités (A et B) dans le district de Stellenbosch. Deux parcelles expérimentales, situées sur deux formations géologiques différentes, ont été identifiées au sein de chaque vignoble. A chaque localité une des