Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Climate component of terroir 9 Relationships between the Fregoni bioclimatic index (IF) and wine quality

Relationships between the Fregoni bioclimatic index (IF) and wine quality

Abstract

The Fregoni bioclimatic index (IF) considers the daily temperature range during the ripening month and the number of days with temperature below 10°C. The world areas characterized by large daily temperature ranges produce, as a rule, great wines, like for example Napa and Sonoma valleys in California, Chile and the Cape province in South Africa. A worldwide survey was carried out in order to assess correlations between the IF and the wine quality. The wine quality, for the same wine type during different vintage years, was expressed as hedonic evaluation (by a score up to 100). Spain, Switzerland, Germany, Romania, Canada, Chile and South Africa were investigated. The IF (vintages 2000-2005) ranged from 300 to 4,000 in the Valencia region, while in Navarra (vintages 1996-2005) from 300 to 3,400. In Germany the IF (vintages 1996-2005) ranged from 300 to 6,500, in Switzerland from 1,300 to 10,800, in Romania (vintages 1990 – 2005) from 200 to 7,000, in Canada (vintages 1996-2005) from 300 to 2,000, in Chile (vintages from 1999 to 2004) from 7,600 to 16,200, in South Africa (vintages 1994-2002) from 260 to 470. In cool climate countries like Germany and Switzerland, the best vintages corresponded to intermediate IF values (2,000-3,000, in Germany, and 5,000-6,000 in Switzerland), while in a warmer country like South Africa the best vintages corresponded, as a rule, to the highest IF (400).

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type: Article

Authors

Luigi BAVARESCO, Silvia PEZZUTTO, Matteo GATTI, Mario FREGONI

Istituto di Frutti-Viticoltura, Università Cattolica S. Cuore, I-29100 Piacenza, Italia

Contact the author

Keywords

temperature, ripening, wine quality, climate

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Yeast interactions in chardonnay wine fermentation: impact of different yeast species using ultra high resolution mass spectrometry

During alcoholic fermentation, when yeasts grow simultaneously, they often do not coexist passively and in most cases interact with each others

Genetic determinism of grapevine development stages as a tool for the adaptation to climate change

A major goal of modern grapevine (Vitis vinifera L.) breeding programs is the introgression of resistance genes along with desirable traits for better adaptation to climate change. Developmental stages have an impact on yield components and berry composition and are expected to shift towards earlier dates in the future. We investigated the genetic determinism of phenological stages in the progeny of a cross between two grapevine hybrids, each carrying several quantitative trait loci (QTL) for downy mildew and powdery mildew resistance.

Climate, Viticulture, and Wine … my how things have changed!

The planet is warmer than at any time in our recorded past and increasing greenhouse emissions and persistence in the climate system means that continued warming is highly likely. Climate change has already altered the basic framework of growing grapes for wine production worldwide and will likely continue to do so for years to come. The wine sector can continue to play an important role in leading the agricultural sector in addressing climate change. From developing on…

How to deal with the Green Deal – Resistant grapevine varieties to reduce the use of pesticides in the EU

With its Farm-to-Fork Strategy, which is a part of the European Green Deal, the European Union aims at reducing the amount of pesticides used in agriculture by 50% until 2030. As viticulture uses around 70% of the fungicides in the EU, there is substantial pressure on winemakers to reduce their pesticide input. On top of the political goal, winegrowers face increased pressure from the public demanding a more sustainable production of wine.

Comparison of imputation methods in long and varied phenological series. Application to the Conegliano dataset, including observations from 1964 over 400 grape varieties

A large varietal collection including over 1700 varieties was maintained in Conegliano, ITA, since the 1950s. Phenological data on a subset of 400 grape varieties including wine grapes, table grapes, and raisins were acquired at bud break, flowering, veraison, and ripening since 1964. Despite the efforts in maintaining and acquiring data over such an extensive collection, the data set has varying degrees of missing cases depending on the variety and the year. This is ubiquitous in phenology datasets with significant size and length. In this work, we evaluated four state-of-the-art methods to estimate missing values in this phenological series: k-Nearest Neighbour (kNN), Multivariate Imputation by Chained Equations (mice), MissForest, and Bidirectional Recurrent Imputation for Time Series (BRITS). For each phenological stage, we evaluated the performance of the methods in two ways. 1) On the full dataset, we randomly hold-out 10% of the true values for use as a test set and repeated the process 1000 times (Monte Carlo cross-validation). 2) On a reduced and almost complete subset of varieties, we varied the percentage of missing values from 10% to 70% by random deletion. In all cases, we evaluated the performance on the original values using normalized root mean squared error. For the full dataset we also obtained performance statistics by variety and by year. MissForest provided average errors of 17% (3 days) at budbreak, 14% (4 days) at flowering, 14.5% (7 days) at veraison, and 17% (3 days) at maturity. We completed the imputations of the Conegliano dataset, one of the world’s most extensive and varied phenological time series and a steppingstone for future climate change studies in grapes. The dataset is now ready for further analysis, and a rigorous evaluation of imputation errors is included.