Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Climate component of terroir 9 Relationships between the Fregoni bioclimatic index (IF) and wine quality

Relationships between the Fregoni bioclimatic index (IF) and wine quality

Abstract

The Fregoni bioclimatic index (IF) considers the daily temperature range during the ripening month and the number of days with temperature below 10°C. The world areas characterized by large daily temperature ranges produce, as a rule, great wines, like for example Napa and Sonoma valleys in California, Chile and the Cape province in South Africa. A worldwide survey was carried out in order to assess correlations between the IF and the wine quality. The wine quality, for the same wine type during different vintage years, was expressed as hedonic evaluation (by a score up to 100). Spain, Switzerland, Germany, Romania, Canada, Chile and South Africa were investigated. The IF (vintages 2000-2005) ranged from 300 to 4,000 in the Valencia region, while in Navarra (vintages 1996-2005) from 300 to 3,400. In Germany the IF (vintages 1996-2005) ranged from 300 to 6,500, in Switzerland from 1,300 to 10,800, in Romania (vintages 1990 – 2005) from 200 to 7,000, in Canada (vintages 1996-2005) from 300 to 2,000, in Chile (vintages from 1999 to 2004) from 7,600 to 16,200, in South Africa (vintages 1994-2002) from 260 to 470. In cool climate countries like Germany and Switzerland, the best vintages corresponded to intermediate IF values (2,000-3,000, in Germany, and 5,000-6,000 in Switzerland), while in a warmer country like South Africa the best vintages corresponded, as a rule, to the highest IF (400).

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type: Article

Authors

Luigi BAVARESCO, Silvia PEZZUTTO, Matteo GATTI, Mario FREGONI

Istituto di Frutti-Viticoltura, Università Cattolica S. Cuore, I-29100 Piacenza, Italia

Contact the author

Keywords

temperature, ripening, wine quality, climate

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Overview on wine and health 32 years after the French paradox 

Phenolic compounds or polyphenols are the most abundant and ubiquitous secondary metabolites present in the plant kingdom with more than 8000 phenolic structures currently known. These compounds play an important role in plant growth and reproduction, providing protection against biotic and abiotic stress such as pathogen and insect attack, UV radiation and wounding. (poly)phenols are widely distributed in the human diet mainly in plant-derived food and beverages (fruits, vegetables, nuts, seeds, herbs, spices, tea and red wine).

Diversity of leaf functioning under water deficit in a large grapevine panel: high throughput phenotyping and genetic analyses

Water resource is a major limiting factor impacted by climate change that threatens grapevine production and quality. Understanding the ecophysiological mechanisms involved in the response to water deficit is crucial to select new varieties more drought tolerant. A major bottleneck that hampers such advances is the lack of methods for measuring fine functioning traits on thousands of plants as required for genetic analyses. This study aimed at investigating how water deficit affects the trade-off between carbon gains and water losses in a large panel representative of the Vitis vinifera genetic diversity. 250 genotypes were grown under 3 watering scenarios (well-watered, moderate and severe water deficit) in a high-throughput phenotyping platform.

Measurement of redox potential as a new analytical winegrowing tool

Excell laboratory has initiated the development of an analytical method based on electrochemistry to evaluate the ability of wines to undergo or resist to oxidative phenomena. Electrochemistry is a powerful tool to probe reactions involving electron transfers and offers possibility of real-time measurements. In that context, the laboratory has implemented electrochemical analysis to assess oxidation state of different wine matrices but also in order to evaluate oxidative or reduced character of leaf and soil. Initially, our laboratory focused on dosage of compounds involved in responses of plant stresses and we were also interested in microbiological activity of soils. These analyses were compared with the measurement of redox potential (Eh) and pH which are two fundamental variables involved in the modulation of plant metabolism. Indeed, the variation of redox states of the plant reflects its biological activity but also its capacity to absorb nutriments. The Eh-pH conditions mainly determine metabolic processes involved in soil and leaf and our goal is to determine if this combined analytical approach will be sufficiently precise to detect biological evolutions (plant health, parasitic attack…).

Do wine sulphites affect gut microbiota? An in vitro study of their digestion in the gastrointestinal tract

“Sulphites” and mainly sulphur dioxide (SO2) is by far the most widely used additive (E-220/INS 220) in winemaking and likely the most difficult to replace. The well-known antioxidant, antioxidasic and antimicrobial properties of SO2 make this molecule a practically essential tool, not only in winemaking, but also in the production of other food products. The current trend in winemaking is the reduction of this unfriendly additive due to its negative effects on health and environmental. In particular, it could cause headaches and intolerance/allergic reactions in sensitive individuals. Wine is considered one of the major contributors of exposure of SO2 in the adult population, when this beverage is included in the diet.

Vertical cordon training system enhances yield and delays ripening in cv. Maturana Blanca

The growing interest in minority grape varieties is due to their potential for adaptation to global warming and their oenological capabilities. However, the cultivation of these varieties has often been limited due to their low economic efficiency. One such example is Maturana Blanca, a recently recovered and authorized minority grape variety in the DOCa Rioja region, known for its remarkable oenological potential but low productivity. This study aimed to increase the yield of Maturana Blanca by implementing the vertical cordon training system, which allowed for a higher number of buds per plant and an increased cluster count per vine.