Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Climate component of terroir 9 Relationships between the Fregoni bioclimatic index (IF) and wine quality

Relationships between the Fregoni bioclimatic index (IF) and wine quality

Abstract

The Fregoni bioclimatic index (IF) considers the daily temperature range during the ripening month and the number of days with temperature below 10°C. The world areas characterized by large daily temperature ranges produce, as a rule, great wines, like for example Napa and Sonoma valleys in California, Chile and the Cape province in South Africa. A worldwide survey was carried out in order to assess correlations between the IF and the wine quality. The wine quality, for the same wine type during different vintage years, was expressed as hedonic evaluation (by a score up to 100). Spain, Switzerland, Germany, Romania, Canada, Chile and South Africa were investigated. The IF (vintages 2000-2005) ranged from 300 to 4,000 in the Valencia region, while in Navarra (vintages 1996-2005) from 300 to 3,400. In Germany the IF (vintages 1996-2005) ranged from 300 to 6,500, in Switzerland from 1,300 to 10,800, in Romania (vintages 1990 – 2005) from 200 to 7,000, in Canada (vintages 1996-2005) from 300 to 2,000, in Chile (vintages from 1999 to 2004) from 7,600 to 16,200, in South Africa (vintages 1994-2002) from 260 to 470. In cool climate countries like Germany and Switzerland, the best vintages corresponded to intermediate IF values (2,000-3,000, in Germany, and 5,000-6,000 in Switzerland), while in a warmer country like South Africa the best vintages corresponded, as a rule, to the highest IF (400).

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type: Article

Authors

Luigi BAVARESCO, Silvia PEZZUTTO, Matteo GATTI, Mario FREGONI

Istituto di Frutti-Viticoltura, Università Cattolica S. Cuore, I-29100 Piacenza, Italia

Contact the author

Keywords

temperature, ripening, wine quality, climate

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Variations of soil attributes in vineyards influence their reflectance spectra

Knowledge on the reflectance spectrum of soil is potentially useful since it carries information on soil chemical composition that can be used to the planning of agricultural practices. If compared with analytical methods such as conventional chemical analysis, reflectance measurement provides non-destructive, economic, near real-time data. This paper reports results from reflectance measurements performed by spectroradiometry on soils from two vineyards in south Brazil. The vineyards are close to each other, are on different geological formations, but were subjected to the same management. The objective was to detect spectral differences between the two areas, correlating these differences to variations in their chemical composition, to assess the technique’s potential to predict soil attributes from reflectance data.To that end, soil samples were collected from ten selected vine parcels. Chemical analysis yield data on concentration of twenty-one soil attributes, and spectroradiometry was performed on samples. Chemical differences significant to a 95% confidence level between the two studied areas were found for six soil attributes, and the average reflectance spectra were separated by this same level along most of the observed spectral domain. Correlations between soil reflectance and concentrations of soil attributes were looked for, and for ten soil traits it was possible to define wavelength domains were reflectance and concentrations are correlated to confidence levels from 95% to 99%. Partial Least Squares Regression (PLSR) analyses were performed comparing measured and predicted concentrations, and for fifteen out of 21 soil traits we found Pearson correlation coefficients r > 0.8. These preliminary results, which have to be validated, suggest that variations of concentration in the investigated soil attributes induce differences in reflectance that can be detected by spectroradiometry. Applications of these observations include the assessment of the chemical content of soils by spectroradiometry as a fast, low-cost alternative to chemical analytical methods.

Survey assessing different practices for mechanical winter pruning in Southern France vineyards

Winter pruning is today the longest operation for hand workers in the vineyard. Over the last years, mechanical pruning practices have become popular in southern France vineyards to respond to competitiveness issue especially for the basic and mid-range wine production. Wine farmers have developed different vineyard management techniques associated with mechanical winter pruning. They sought to be precise or not to control the buds number per vine.

Physiological and performance responses of grapevine rootstocks to water deficit and recovery 

Rootstocks play a key role in the grapevine’s adaptation to the increasing soil water scarcity related to climate change. A pot experiment carried out in 2022 aimed at assessing the physiological responses of seven ungrafted rootstocks to a progressive soil water deficit and a subsequent recovery to field capacity.

Grape variety identification and detection of terroir effects from satellite images

Satellite images are used to determine the reflectance dependency to wavelength in different grape varieties (Cabernet-Sauvignon, Merlot, Pinot Noir, and Chardonnay). The terroir influence is investigated through study of vineyards in France, Brazil and Chile.

Do we have convergence or divergence in firms’ production and business practices in the global wine industry? 

Wine production is a globally significant and intricate industry, characterized by diverse regions, grape varieties, and producers. Competitive advantage in wine production and marketing arises from localized natural attributes known as terroir, combined with transferable expertise in agronomic practices, winemaking methods, packaging, distribution, and marketing. Wine is a very globalized product with 40% of the total output exported. Globalization has prompted discussions on convergence of business and production practices across industries, driven by technological progress and adoption of international standards. However, persisting differences in cultural norms, institutional frameworks, and regulatory environments hinder full convergence.