Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Climate component of terroir 9 The estimation of the clear-sky effective PAR resources in a mountain area

The estimation of the clear-sky effective PAR resources in a mountain area

Abstract

When evaluating the actual photosynthetically active radiation – PAR – resources available to plants the simple measurement or estimation of its total amount can lead to misleading interpretations, due to the frequent occurrence of radiation intensity above the light saturation threshold. In this case, besides the quantity of radiation, the use of other variables providing information on the temporal distribution of the resource (i. e. the insolation time) may be advisable. This work is an exploratory analysis of the effect of topography on the availability of PAR in an alpine viticultural region, the Aosta Valley, by the adoption of an index based on the summation over a given time period (in this specific case a day) of only the fraction of radiation effective for photosynthesis. Assuming clear-sky conditions, the resulting estimated maps widely differ from those of the total PAR, indicating spatial patterns closer to those of insolation time. The estimated ratios of “effective” to total PAR, assuming fully functional physiological conditions and fully developed canopies, vary from about 0.5 to 0.7 in the summer and from about 0.7 to 1 during the final ripening period; these values may be even lower in stress conditions.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type: Article

Authors

O. Zecca (1), L. Mariani (2), O. Failla (2)

(1) Institut Agricole Régional, Rég. La Rochère, 1/A 11100 Aosta, Italy
(2) Dipartimento di Produzione Vegetale, Università degli Studi, via Celoria, 2, 20133 Milano, Italy

Contact the author

Keywords

solar radiation, PAR, climate data, viticultural zoning 

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Unraveling the complexity of high-temperature tolerance by characterizing key players of heat stress response in grapevine

Grapevine (Vitis spp.) is greatly influenced by climatic conditions and its economic value is therefore directly linked to environmental factors. Among these factors, temperature plays a critical role in vine phenology and fruit composition. In such conditions, elucidating the mechanisms employed by the vine to cope with heat waves becomes urgent. For the past few years, our research team has been producing molecular and metabolic data to highlight the molecular players involved in the response of the vine and the fruit to high temperatures [1]. Some of these temperature-sensitive genes are currently undergoing characterization using transgenesis approaches coupled or not with genome editing, taking advantage of the Microvine genotype [2].

From precursor identification to the study of the distribution of 3-methyl-2,4-nonanedione in red wines and spirits

Prematurely aged red wines are marked by intense prune and fig aromatic nuances that dominate the complex bouquet that can be achieved through bottle aging.

Deficit irrigation and mechanical canopy management affect berry and wine phenolic and aroma composition of Syrah in Central California

Labor shortage is one of the most crucial issues in current viticulture. Mechanized approaches are helpful in reducing production costs and increasing vineyard efficiency but their effect on grapes and wines needs evaluation. This work assess the results of combined mechanical pruning and shoot thinning with deficit irrigation strategies to reduce management costs but not quality of production.

Characterization of a strain of Lachancea thermotolerans, microorganism of choice when facing the climatic challenges of the wine sector

Current climatic challenges in the wine sector require innovative solutions to maintain the quality of wines while adapting oenological practices to changing conditions. This article presents the detailed study of a lachancea thermotolerans strain on matrices typical of the French mediterranean area.

Prevention of quercetin precipitation in red wines: a promising enzymatic solution

In this video recording of the IVES science meeting 2023, Simone Vincenzi (Department of agronomy, food, natural resources, animals and environment (DAFNAE), University of Padova, Italy) speaks about the prevention of quercetin precipitation in red wines with a promising enzymatic solution. This presentation is based on an original article accessible for free on OENO One.