Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Climate component of terroir 9 The estimation of the clear-sky effective PAR resources in a mountain area

The estimation of the clear-sky effective PAR resources in a mountain area

Abstract

When evaluating the actual photosynthetically active radiation – PAR – resources available to plants the simple measurement or estimation of its total amount can lead to misleading interpretations, due to the frequent occurrence of radiation intensity above the light saturation threshold. In this case, besides the quantity of radiation, the use of other variables providing information on the temporal distribution of the resource (i. e. the insolation time) may be advisable. This work is an exploratory analysis of the effect of topography on the availability of PAR in an alpine viticultural region, the Aosta Valley, by the adoption of an index based on the summation over a given time period (in this specific case a day) of only the fraction of radiation effective for photosynthesis. Assuming clear-sky conditions, the resulting estimated maps widely differ from those of the total PAR, indicating spatial patterns closer to those of insolation time. The estimated ratios of “effective” to total PAR, assuming fully functional physiological conditions and fully developed canopies, vary from about 0.5 to 0.7 in the summer and from about 0.7 to 1 during the final ripening period; these values may be even lower in stress conditions.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type: Article

Authors

O. Zecca (1), L. Mariani (2), O. Failla (2)

(1) Institut Agricole Régional, Rég. La Rochère, 1/A 11100 Aosta, Italy
(2) Dipartimento di Produzione Vegetale, Università degli Studi, via Celoria, 2, 20133 Milano, Italy

Contact the author

Keywords

solar radiation, PAR, climate data, viticultural zoning 

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Influence of the number of CPPU applications on growth, mineral composition and Bunch Stem Necrosis incidence in table grape clusters

The forchlorfenuron (CPPU) application is recommended in table-grape after fruit-set to boost berry sizing, albeit growers also apply CPPU during pre-flowering with controversial advantages. We examined the effect of single (BBCH 15) and double (BBCH 15 and 57) CPPU applications (2.25 mg/L a.s.) in a commercial vineyard. At each time, 75-100 bunches belonging to 6-9 vines were sprayed, and compared with unsprayed (CTRL). Leaf stomatal conductance (gs), cluster stem diameter and length were measured. At harvest, 25 berries/repetition were sampled for chemical composition, BSN incidence was counted (N° necrotic laterals/10 cm of stem) in 40 bunches/repetition. To test the role of air VPD on mineral composition, at BBCH 77, 50 CTRL clusters were bagged to induce a low VPD.

Kegged wine as a sustainable alternative: impact on conservation and sensory quality

Wine is not just a beverage; it represents an entire ecosystem in winemaking regions and is deeply linked to economic, social, and environmental factors.

Protection juridique du terroir viticole en France

The diversity of potential sources of damage to the terroir of an appellation (physical, aesthetic, ecological damage, damage to the image, to collective representation or even, in a broad concept which will not be retained here, to the geographical name identifying the terroir) is accompanied by a fragmentation of the legal sources allowing its protection.

Biochemical characterization of grape skin cell wall during ripening in relation to Botrytis cinerea susceptibility of two Champagne cultivars

Pectins or pectic polysaccharides are one of the major components in grape skin cell wall, they contribute to physiological processes which determine the integrity and rigidity of grape skin tissue

Modélisation du régime thermique des sols de vignoble du Val de Loire : relations avec des variables utilisables pour la caractérisation des terroirs

Temperature has a decisive influence on the growth and development of plants (Carbonneau et al., 1992). In particular, in the case of the vine, the temperature is an omnipresent variable in the climatic indices (Huglin, 1986). For reasons of convenience, these indices use the temperature of the air measured under shelter in a meteorological station, making the implicit hypothesis of a concordance between this temperature and that of the sites of perception of the thermal stimulus by the plant. However, development may be more dependent on soil temperature than air temperature (Kliewer, 1975). Morlat (1989) thus verified that the variability in the precocity of the vine, positively correlated with the quality of the harvest and of the wine in the Loire Valley, was mainly explained by differences in temperature of the root zones.