Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Climate component of terroir 9 The estimation of the clear-sky effective PAR resources in a mountain area

The estimation of the clear-sky effective PAR resources in a mountain area

Abstract

When evaluating the actual photosynthetically active radiation – PAR – resources available to plants the simple measurement or estimation of its total amount can lead to misleading interpretations, due to the frequent occurrence of radiation intensity above the light saturation threshold. In this case, besides the quantity of radiation, the use of other variables providing information on the temporal distribution of the resource (i. e. the insolation time) may be advisable. This work is an exploratory analysis of the effect of topography on the availability of PAR in an alpine viticultural region, the Aosta Valley, by the adoption of an index based on the summation over a given time period (in this specific case a day) of only the fraction of radiation effective for photosynthesis. Assuming clear-sky conditions, the resulting estimated maps widely differ from those of the total PAR, indicating spatial patterns closer to those of insolation time. The estimated ratios of “effective” to total PAR, assuming fully functional physiological conditions and fully developed canopies, vary from about 0.5 to 0.7 in the summer and from about 0.7 to 1 during the final ripening period; these values may be even lower in stress conditions.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type: Article

Authors

O. Zecca (1), L. Mariani (2), O. Failla (2)

(1) Institut Agricole Régional, Rég. La Rochère, 1/A 11100 Aosta, Italy
(2) Dipartimento di Produzione Vegetale, Università degli Studi, via Celoria, 2, 20133 Milano, Italy

Contact the author

Keywords

solar radiation, PAR, climate data, viticultural zoning 

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Unveiling Metschnikowia spp.: mechanisms and impacts of bioprotection in winemaking

Bioprotection, leveraging beneficial microorganisms, has emerged as a sustainable approach to modern winemaking, minimizing reliance on chemical preservatives like as sulfur dioxide (SO₂).

Unexpected relationships between δ13C, water deficit, and wine grape performance

Water nutrition is crucial for wine grape performance. Thus soil investigation aims at characterizing spatial and temporal variability of available water. A possible strategy

The kinetics of grape aromatic precursors hydrolysis at three different temperatures

In neutral grapes, it is known that most aroma compounds are present as non-volatile
precursors.

Enzymes Impact During Fermentation On Volatile And Sensory Profile Of White Wines

Favoring the formation of volatile compounds and their precursors in must and wine represent one of the principal goals during winemaking technology. In recent years, most attention has been placed on using glycosidases to enlarge the aroma profile of white wines. The effect of enzymes makes odorless glycosidically-bound precursors be converted into aromatic compounds. This paper focuses to study the influence of enzymes (pectolytic and β-glycosides) administered before alcoholic fermentation, even if most studies analyze their use in different winemaking stages. Two semi-aromatic varieties such as Fetească regală and Sauvignon blanc were chosen.

IMPACT OF MINERAL AND ORGANIC NITROGEN ADDITION ON ALCOHOLIC FERMENTATION WITH S. CEREVISIAE

During alcoholic fermentation, nitrogen is one of essential nutrient for yeast as it plays a key role in sugar transport and biosynthesis of and wine aromatic compounds (thiols, esters, higher alcohols). The main issue of a lack in yeast assimilable nitrogen (YAN) in winemaking is sluggish or stuck fermentations promoting the growth of alteration species and leads to economic losses. Currently, grape musts are often characterized by low YAN concentration and an increase of sugars concentration due to global warming, making alcoholic fermentations even more difficult. YAN depletion can be corrected by addition of inorganic (ammonia) or organic (yeast derivatives products) nitrogen during alcoholic fermentation.