Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Climatic change and terroir 9 Influence of the irrigation period in Tempranillo grapevine, under the edaphoclimatic conditions of the Duero river valley

Influence of the irrigation period in Tempranillo grapevine, under the edaphoclimatic conditions of the Duero river valley

Abstract

Irrigation of vineyards is a matter of controversial arguments at areas of high quality wine production. Besides, the effects of the water in the plant are closer related to the water availability than to the irrigation regime. In this way, the criteria for irrigation timing can reach very important physiologic and productive consequences to optimize the vineyard management on each environmental situation. An experimental trial has been carried out along the period 2005-2007 in the province of Valladolid (Spain), focused on the study of modification of plant water status (leaf water potential), soil water content, physiologic activity, vegetative-productive behavior and quality expression (berry weight, sugar concentration, pH, total acidity, poliphenols concentration) of the Tempranillo variety in the Duero river valley, through the application of a moderate irrigation doses in two different periods of the vegetative cycle, on a concrete edaphic situation. The treatments applied were the following: 20% ETo from vegetative Growth stopping (G20) and 20% ETo from Veraison (V20), both irrigated until one week before harvest. The vines, planted in 1993, were grafted onto 110R and vertical trellised trained, as a bilateral Royat cordon. Vine spacing is 2.70 m x 1.40 m (2645 vines/ha).
The results have shown some differences due to the irrigation period treatments on the effects related to vine water status and soil water content, physiologic activity, vegetative development, productivity and grape quality in Tempranillo variety. In general, the earlier application of irrigation has favoured vine physiologic activity and leaf development, through the improvement of plant water status, estimated by means of leaf water potential measurement, which have consequently provoked certain increase of yield. On the contrary, the delay of irrigation until veraison stage has shown certain tendency in grape composition to increase sugar concentration, pH and poliphenols index.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Jesús YUSTE, José A. RUBIO, María V. ALBURQUERQUE

Department of Viticulture. ITACyL
Ctra. Burgos km 119, 47071 Valladolid (Spain)

Contact the author

Keywords

LAI, leaf water potential, quality, veraison

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Exploring high throughput secondary trait phenomics to improve grapevine breeding

Modern grapevine breeding programs have overcome many challenges using genomic selection, which has allowed breeders to make targeted selections at earlier stages in the breeding process. However, the cost of genetic testing may present a burden for some programs, and markers often struggle to accurately predict quantitative traits. Recent advances in high throughput, high-dimensional data have provoked investigation into the use of high-dimensional phenomics as a low-cost addition to the grape breeder’s toolkit that may offer advantages in predicting quantitative traits. High-dimensional secondary trait (HDST) data has been employed in annual crops for prediction of agriculturally important traits such as yield.

Effects of graft quality on growth and grapevine-water relations

Climate change is challenging viticulture worldwide compromising its sustainability due to warmer temperatures and the increased frequency of extreme events. Grafting Vitis vinifera L.

Studio per la caratterizzazione delle produzioni vitivinicole dell’area del Barbera d’Asti DOC

Il Barbera rappresenta sicuramente uno dei più importanti vitigni autoctoni del Piemonte occu­pando circa il 50% della superficie vitata regionale. Esso è ancora diffuso su un’area molto vasta, che si estende per oltre 200.000 ha, dando origine a diverse produzioni vinicole tutelate da denominazioni d’origine.

Characterizing the effects of nitrogen on grapevines with different scion/rootstock combinations: agronomic, metabolomic and transcriptomic approaches

Most vineyards are grafted and include a variety (Vitis vinifera) grafted over a wild Vitis rootstock (hybrids of V. berlandieri, riparia and rupestris). Grape berry quality at harvest depends on a subtle balance between acidity and the concentrations of sugars, polyphenols and precursors of aroma compounds. The mechanisms controlling the balance of sugars/acids/polyphenols are influenced by the abiotic environment, in particular nitrogen supply, and interact with the genotypes of both the scion variety and the rootstock. Previous work suggests that some of the effects of water stress are in fact linked to a nitrogen deficiency driven indirectly by the reduction of water absorption.

Implementation of hyperspectral image analysis for evaluating table grape quality on bunch and berry level

Typically, subjective, and visual methods are used by grape growers to assess harvest maturity. These methods may not accurately represent the maturity of an entire vineyard – especially if extensive and representative sampling was not used. New technologies have been investigated for improved harvest management decisions. Spectroscopy methods utilizing the near-infrared region of the light spectrum is one such technology investigated as an alternative to classic methods and particularly the application of hyperspectral imaging (HSI) has recently gained attention in research. HIS is a spectroscopic technique that obtains hundreds of images at different wavelengths collecting spectral data for each pixel in the sample i.e., providing both spectral and spatial data.