Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Climatic change and terroir 9 Influence of the irrigation period in Tempranillo grapevine, under the edaphoclimatic conditions of the Duero river valley

Influence of the irrigation period in Tempranillo grapevine, under the edaphoclimatic conditions of the Duero river valley

Abstract

Irrigation of vineyards is a matter of controversial arguments at areas of high quality wine production. Besides, the effects of the water in the plant are closer related to the water availability than to the irrigation regime. In this way, the criteria for irrigation timing can reach very important physiologic and productive consequences to optimize the vineyard management on each environmental situation. An experimental trial has been carried out along the period 2005-2007 in the province of Valladolid (Spain), focused on the study of modification of plant water status (leaf water potential), soil water content, physiologic activity, vegetative-productive behavior and quality expression (berry weight, sugar concentration, pH, total acidity, poliphenols concentration) of the Tempranillo variety in the Duero river valley, through the application of a moderate irrigation doses in two different periods of the vegetative cycle, on a concrete edaphic situation. The treatments applied were the following: 20% ETo from vegetative Growth stopping (G20) and 20% ETo from Veraison (V20), both irrigated until one week before harvest. The vines, planted in 1993, were grafted onto 110R and vertical trellised trained, as a bilateral Royat cordon. Vine spacing is 2.70 m x 1.40 m (2645 vines/ha).
The results have shown some differences due to the irrigation period treatments on the effects related to vine water status and soil water content, physiologic activity, vegetative development, productivity and grape quality in Tempranillo variety. In general, the earlier application of irrigation has favoured vine physiologic activity and leaf development, through the improvement of plant water status, estimated by means of leaf water potential measurement, which have consequently provoked certain increase of yield. On the contrary, the delay of irrigation until veraison stage has shown certain tendency in grape composition to increase sugar concentration, pH and poliphenols index.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Jesús YUSTE, José A. RUBIO, María V. ALBURQUERQUE

Department of Viticulture. ITACyL
Ctra. Burgos km 119, 47071 Valladolid (Spain)

Contact the author

Keywords

LAI, leaf water potential, quality, veraison

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Alternative methods to evaluate the pinking susceptibility of white wines: derivative spectroscopy and ciel*a*b* colour analysis

Pinking describes the appearance of a salmon-red blush in white bottled wines produced exclusively from white grape varieties. It is understood as an undesirable chromatic phenomenon by both wine consumers and the industry. Nowadays, there are no treatments to fully reverse pinking once it occurs. Partial reversion has been shown after exposure of pinked wine to ultraviolet (UV) light.

Effect of biological control agents on grapevine rhizosphere microbiome and grapevine defenses

Plant diseases are a major obstacle to crop production. The main approaches to battle plant diseases, consist of synthetic chemicals to attack infecting pathogens. However, concerns are increasing about the effects of chemicals in the environment, leading to an increase in the use of biocontrol agents (BCAs), due to their assets, such as, antagonism, and competition. In this study, we tested the hypothesis that the introduction of Bacillus subtilis PTA-271 (Bs PTA-271) and Trichoderma atroviride SC1 (Ta SC1) produce distinctive modifications in the composition and network structure of the grapevine rhizosphere microbial community, as well as grapevine induced defenses.

INVESTIGATION OF FILM COATINGS AS A PROTECTIVE LAYER IN REDUCING THE ABSORPTION OF SMOKE PHENOLS INTO PINOT NOIR GRAPES

Wine grapes exposed to wildfire smoke have resulted in wines with burnt and ashy sensory characteristics¹, that are undesirable qualities in wine. In extreme wildfire events, this can lead to total loss of grape crop. Currently there are no effective solutions in the market to prevent the uptake of smoke compounds into grapes. In this study, previously developed innovative film coatings were tested to analyze their effectiveness in reducing smoke phenol absorption². Four different cellulose nanofiber-based film types were investigated.

EVOLUTION OF CHEMICAL AND SENSORIAL PROFILE OF WINES ELABORATED WITH THEIR OWN TOASTED VINE-SHOOTS AND MICRO-OXYGENATION

The positive contribution of toasted vine-shoots (SEGs, Shoot from vines – Enological – Granule) used in winemaking to the chemical and sensory profile of wines has been widely proven. However, the combination of this new enological tool with other winemaking technologies, such as micro-oxygenation (MOX), has not been studied so far. It is known that micro-oxygenation is used in wineries to stabilizes color, improves structure or combining with oak alternatives products to achieve a more effective aroma integration of wines. For that, its implementation in combination with SEGs could result in differentiated wines.

Data deluge: Opportunities, challenges, and lessons of big data in a multidisciplinary project

Grapevine powdery mildew resistance is a key target for grape breeders and grape growers worldwide. The driver of the USDA-NIFA-SCRI VitisGen3 project is completing the pipeline from germplasm identification to QTL to candidate gene characterization to new cultivars to vineyards to consumers. This is a common thread across such projects internationally. We will discuss how our objectives and approaches leverage big data to advance this initiative, starting with genomics and computer vision phenotyping for gene discovery and genetic improvement. To manage and maintain resistances for long-term sustainability, growers will be trained through our nation-wide extension and outreach plan.