Terroir 2008 banner
IVES 9 IVES Conference Series 9 Agronomic and qualitative behaviour of cv. Tempranillo according to three vine spacing on two different hydric-edaphic situations in the Duero river valley

Agronomic and qualitative behaviour of cv. Tempranillo according to three vine spacing on two different hydric-edaphic situations in the Duero river valley

Abstract

The knowledge of the influence of soil conditions on the effects that different plant densities provoke in the agronomic grapevine behaviour becomes very interesting since it allows to focus the vineyard management on the optimization of the natural, hydric and human resources.
This work is focused on the study of the vegetative, productive and qualitative behaviour of Tempranillo variety distributed with three different distances between vines (1.2, 1.5 and 1.8 m) and a common distance between rows (3.0 m) along the period 2005-2007, in two different growing conditions, moderated deficit irrigation and non irrigation. The final objective is to know the more adequate plant density under each particular growing conditions. The experimental trials have been located in the A.O. Rueda, along the Duero river valley, in the province of Valladolid (Spain).
The different vine spacing treatments have shown some differences in pruning weight, vigour of shoot, yield per hectare and cluster weight in both hydric-edaphic situations, being these differences more remarkable in the non irrigation conditions. The differences between treatments in fertility and berry weight have been fewer. The grape quality has hardly shown any difference between treatments in both growing situations.
These results suggest the convenience of different vineyard management depending on the particular growing conditions, being of doubtful effectiveness the increase of the number of plants if there is no any limiting factor that substantially alters these growing conditions.

 

 

 

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Enrique Barajas, Francisco Javier Castaño, Eva de la Iglesia, Jesús Yuste

Departamento de Viticultura. Instituto Tecnológico Agrario de Castilla y León.
Ctra. Burgos km. 119, 47071 Valladolid

Contact the author

Keywords

development, distance, irrigation, quality, yield

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Long-term vineyard sustainability index

The impact of viticulture on soil can be determined by comparing the biophysical properties that represent soil health at a particular site and depth with those same properties in soil considered to represent the ‘pre-vineyard’ state (the headland). Information gathered by this method shows the changes in soil properties following the change to viticulture depend on individual vineyard management and environment.

Enological and nutraceutical potential of some grape varieties tolerant to downy mildew and powdery mildew

AIM: Since 2012 the Veneto Region regulation (north-east Italy) allowed wine production using 20 hybrid grapevine varieties selected for their high tolerance to downy mildew and powdery mildew. Characterized by vigour, high grape productivity and low pesticide use, these varieties are suitable to develop sustainable viticulture in mountain areas located at medium altitudes.

Aspetti legislativi di settore: e politiche comunitarie

Sulla base del tema assegnatomi è stata forte la tentazione di addentrarmi nel labirinto della regolamentazione comunitaria. Per buona pace degli intervenuti ho ritenuto, pero, poco utile una elencazione di numeri e riferimenti normativi che saranno brevemente riassunti in una tabella (TAB 1),

Characterization of variety-specific changes in bulk stomatal conductance in response to changes in atmospheric demand and drought stress

In wine growing regions around the world, climate change has the potential to affect vine transpiration and overall vineyard water use due to related changes in atmospheric demand and soil water deficits. Grapevines control their transpiration in response to a changing environment by regulating conductance of water through the soil-plant-atmosphere continuum. Most vineyard water use models currently estimate vine transpiration by applying generic crop coefficients to estimates of reference evapotranspiration, but this does not account for changes in vine conductance associated with water stress, nor differences thought to exist between varieties. The response of bulk stomatal conductance to daily weather variability and seasonal drought stress was studied on Cabernet-Sauvignon, Merlot, Tempranillo, Ugni blanc, and Semillon vines in a non-irrigated vineyard in Bordeaux France. Whole vine sap flow, temperature and humidity in the vine canopy, and net radiation absorbed by the vine canopy were measured on 15-minute intervals from early July through mid-September 2020, together with periodic measurement of leaf area, canopy porosity, and predawn leaf water potential. From this data, bulk stomatal conductance was calculated on 15-minute intervals, and multiple regression analysis was performed to identify key variables and their relative effect on conductance. Attention was focused on addressing multicollinearity and time-dependency in the explanatory variables and developing regression models that were readily interpretable. Variability of vapor pressure deficit over the day, and predawn water potential over the season explained much of the variability in conductance, with relative differences in response coefficients observed across the five varieties. By characterizing this conductance response, the dynamics of vine transpiration can be better parameterized in vineyard water use modeling of current and future climate scenarios.

YEAST DERIVATIVE PRODUCTS: CHARACTERIZATION AND IMPACT ON RIBOFLAVIN RELEASE DURING THE ALCOHOLIC FERMENTATION

Light-struck taste (LST) is a wine fault that can occur in white and sparkling wines when exposed to light. This defect is mainly associated to the formation of methanethiol and dimethyl disulfide due to light-induced reactions involving riboflavin (RF) and methionine [1]. The presence of RF in wine is mainly due to the metabolism of yeast [2] which fermenting activity can be favoured by using yeast derivative products (YDPs) as nutrients. Nonetheless, a previous study showed the addition of YDPs before the alcoholic fermentation (AF) led to higher concentrations of RF in wines [3]. Due to the widespread use of YDPs in the winemaking process, this study aimed to understand the possible relation between the content of RF in wine and the YDP adopted as nutrient for AF.