Terroir 2008 banner
IVES 9 IVES Conference Series 9 Developing an integrated viticulture in the upper part of the hill Somló

Developing an integrated viticulture in the upper part of the hill Somló

Abstract

The hill Somló looks like a huge island wich jumps out of the see, a few kilometers away from the slope of Bakony highland and on the edge of the Hungarian small plane. Viticulture has started on the slopes of the hill few thousand years ago, but because of the latest technological development and economical circumstances the copartners have developed a synchronized research program. In the frame of this program we have 8 very distinctive sub-projects. The projects are including the effect of rootstock on grapevine quality, the canopy management, the order of the steps and the quality cultivation, the evaluation of site effect and row direction of the plantation, the plant protection system and the fertilization of the vineyards. Differences were obtained in sugar content related alcohol content in the crop load management experiment, in the soil cultivation and fertilization experiment. The titratable acid content also varied by treatments, we have got the lowest value (5.44 g/l) in the higher N fertilization treatment in the V. vinifera cv ‘Italian Riesling’ vineyard, while the highest value (7.93 g/l) was in the mechanically cultivated experiment among other two kind of cultivation methods in the V. vinifera cv ‘Furmint’ plantation. It was measured the pH, the residual sugar content, the sugar free dry matter content and phenol compounds in a few experiments. Row direction, rootstocks crop load management, soil cultivation methods, and fertilization are very influential in the quality production as our results shows.

 

 

 

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Laszlo KOCSIS (1), Péter VARGA (2), Péter PODMANICZKY (1), Zoltán VARGA (1), Gizella GYORFFYNE JAHNKE (2), Sándor BARAT (3), Attila CSASZAR (3), János MAJER (2)

(1) University of Pannonia, Georgikon Faculty of Agriculture; 8360 Keszthely, Deák F. u. 16
(2) University of Pannonia, Agriculture Center, Research Institute for Viticulture and Enology, Badacsony; 8261 Badacsonytomaj, Római út 165
(3) Kreinbacher Estate Wine, Trading and Hospitality Limited, 8481 Somlóvásárhely P.O.Box 3

Contact the author

Keywords

viticulture, integrated vineyard management, quality, site effect

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Climate effect on ripening process in Vitis vinifera, L. cv. Cencibel

A seven years survey (2003 to 2009) has been carried out over old traditional vineyards cv. Cencibel in La Mancha region (Spain). Seven plots with more than 35 years old were sampled from veraison to harvest, measuring soluble solids (ºBaumé) and acid concentration (g/l in tartaric acid).

Impact of innovative canopy management techniques on grape and wine quality under Mediterranean summer conditions

The recent effects on temperature and rainfall caused by global warming pose a serious threat to the wine industry worldwide, mainly in terms of a loss of quality in the wines produced.

Entomopathogenic nematodes application for controlling Lobesia botrana in grapevine and their impact on grapevine quality 

Entomopathogenic nematodes (EPN) are well-known biological control agents combined with specific adjuvants that now allow their use against aerial pests. Lobesia botrana (Lepidoptera: Tortricidae) is one of the major harmful pests detected in worldwide vineyards. Previous studies demonstrated that the EPNs Steinernema feltiae and S. carpocapsae could control L. botrana. The hypothesis was that the best combination of EPN-adjuvant/timing (season/temperatures) will support the use of EPN in the vineyard against L. botrana with no impact on the grape performance.

The impact of vine pruning methods on physiological development and health condition of Vitis vinifera

This project aims on monitoring the plant development and comparison of the effects of various training systems on vine fertility and physiological processes.

Genotypic differences in early-stage root architectural traits and consequences for water uptake in three grapevine rootstocks differing in drought tolerance

Root architecture (RSA), the spatial-temporal arrangement of a root system in soil, is essential for edaphic resources acquisition by the plant, and thus contributes largely to its productivity and adaptation to environmental stresses, particularly soil water deficit. In grafted grapevine, while the degree of drought tolerance induced by the rootstock has been well documented in the vineyard, information about the underlying physiological processes, particularly at the root level, is scarce, due to the inherent difficulties in observing large root systems in situ. The aims of this study were (i) to determine the phenotypic differences in traits related to root distribution and morphology along the substrate profile in different Vitis rootstocks during early growth, (ii) to assess the plasticity of these traits to soil water deficit and (iii) to quantify their relationships with plant water uptake.