Terroir 2008 banner
IVES 9 IVES Conference Series 9 Effect of potential crop on vine water constraint

Effect of potential crop on vine water constraint

Abstract

It is important to quantify the effect of potential crop on vine water constraint in order to adapt vine-growing consulting and vine management to the Mediterranean climate conditions. Experiments were conducted during two years running (2006 and 2007) on varieties Grenache and Syrah in a situation of high water constraint in the Rhône Valley. Yields were regulated by hand cluster thinning before flowering or at the end of fruit-set, to 4 clusters per vine for the “low charge” modality and to 14 clusters per vine for the “high charge” modality. Yield measures were done during harvest: “low charge” modality varies from 30 to 50 % to the “high charge” modality. In these conditions, none of the predawn leaf water potential measures help identify an effect of potential crop on vine water constraint for Grenache (from flowering to harvest), for levels of water constraint up to –1,5MPa and for normal plot densities (4444 vines/ha). For Syrah, 2006 did not show significant differences between the two modalities, although 2007 seams so lead to a higher constraint for the “high charge” modality. The observation of the evolution of leaf water potential up to Sun mid-day shows that “high charge” modalities tend to express higher constraint than “low charge” modalities, although the differences are not significant.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Jean-Christophe PAYAN, Elian SALANÇON

IFV – Institut Français de la Vigne et du vin,Domaine de Donadille,F-30230 RODILHAN

Contact the author

Keywords

 Water constraint, harvest yield, Grenache, Syrah 

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Validation of phenological models for grapevine in the Veneto region

In this study we have compared the predictive ability of two phenological models: a traditional Thermal Time (TT) and a version of the more recently develop Unified Model (UM).

Politics meets terroir. The story of Prosecco – Are GI’s just a protectionist racket?

The recent Free Trade Agreement negotiations between Australia and the European Union have again put the issue of Geographical Indications (GIs) in the spotlight. Australia has long demonstrated its understanding of GIs and maintains a clear and rigorous GI protection system for wine. For many years, Australia’s wine sector was a strong advocate for GIs and a strong system to protect the

Rootstocks: how the dark side of the vine can enlight the future?

Global challenges, including adaptation to climate change, decrease of the environmental impacts and maintenance of the economical sustainability shape the future of viticulture.

Is early defoliation a sustainable management practice for mediterranean vineyards? Case studies at the portuguese lisbon winegrowing region

Context and purpose of the study ‐ Recently early defoliation (ED) has been tested in several high‐ yielding grapevine varieties and sites aiming at reducing cluster compactness and hence, regulating yield and susceptibility to botrytis bunch rot infection. The reported results have been generally positive, encouraging growers to use this canopy management technique as an alternative for replacing the conventional time‐consuming cluster thinning and, simultaneously, as a sustainable practice to reduce the use of fungicides. However, ED increases berry sunburn risks and/or can induce carry‐over effects on vigor and node fruitfulness as shown in the two case studies reported in this work.

Impact of the ‘Pinot’-family on early ripening in cool climate viticulture varieties

‘Pinot Precoce Noir’ (PPN) is an early ripening clone of ‘Pinot Noir’ (PN). The phenological differentiation is visible by an about two weeks earlier onset of veraison. It was found that the early veraison locus Ver1 on chromosome 16, previously identified in ‘Calardis Musqué’, originated from PPN. A highly correlated SSR marker, namely GF16-Ver1, was developed and tested for its ability to molecularly differentiate between PPN and PN as well as its potential to trace individual descendants.