Terroir 2008 banner
IVES 9 IVES Conference Series 9 Effect of potential crop on vine water constraint

Effect of potential crop on vine water constraint

Abstract

It is important to quantify the effect of potential crop on vine water constraint in order to adapt vine-growing consulting and vine management to the Mediterranean climate conditions. Experiments were conducted during two years running (2006 and 2007) on varieties Grenache and Syrah in a situation of high water constraint in the Rhône Valley. Yields were regulated by hand cluster thinning before flowering or at the end of fruit-set, to 4 clusters per vine for the “low charge” modality and to 14 clusters per vine for the “high charge” modality. Yield measures were done during harvest: “low charge” modality varies from 30 to 50 % to the “high charge” modality. In these conditions, none of the predawn leaf water potential measures help identify an effect of potential crop on vine water constraint for Grenache (from flowering to harvest), for levels of water constraint up to –1,5MPa and for normal plot densities (4444 vines/ha). For Syrah, 2006 did not show significant differences between the two modalities, although 2007 seams so lead to a higher constraint for the “high charge” modality. The observation of the evolution of leaf water potential up to Sun mid-day shows that “high charge” modalities tend to express higher constraint than “low charge” modalities, although the differences are not significant.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Jean-Christophe PAYAN, Elian SALANÇON

IFV – Institut Français de la Vigne et du vin,Domaine de Donadille,F-30230 RODILHAN

Contact the author

Keywords

 Water constraint, harvest yield, Grenache, Syrah 

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Impact of polyclonal selection for abiotic stress tolerance on the yield and must quality traits of grapevine varieties

The effects of climate change in viticulture are currently a major concern, with heat waves and drought affecting yield, wine quality, and in extreme cases, even plant survival. Ancient grapevine varieties have high intravarietal genetic variability that so far has been explored successfully to improve yield and must quality. Currently, there is little information available on intravarietal variability regarding responses to stress. In the current work, the intravarietal genetic variability of several Portuguese varieties was studied for yield, must quality, and tolerance to abiotic stress, through indirect, rapid, and nondestructive measurements carried out in the field.

Vineyard management for environment valorisation

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Impact of climate variability and change on grape yield in Italy

Viticulture is entangled with weather and climate. Therefore, areas currently suitable for grape production can be challenged by climate change. Winegrowers in Italy already experiences the effect of climate change, especially in the form of warmer growing season, more frequent drought periods, and increased frequency of weather extremes.
The aim of this study is to investigate the impact of climate variability and change on grape yield in Italy to provide winegrowers the information needed to make their business more sustainable and resilient to climate change. We computed a specific range of bioclimatic indices, selected by the International Organisation of Vine and Wine (OIV), and correlated them to grape yield data. We have worked in collaboration with some wine consortiums in northern and central Italy, which provided grape yield data for our analysis.
Using climate variables from the E-OBS dataset we investigate how the bioclimatic indices changed in the past, and the impact of this change on grape productivity in the study areas. The climate impact on productivity is also investigated by using high-resolution convection-permitting models (CPMs – 2.2 horizontal resolution), with the purpose of estimating productivity in future emission scenarios. The CPMs are likely the best available option for this kind of impact studies since they allow a better representation of small-scale processes and features, explicitly resolve deep convection, and show an improved representation of extremes. In our study, we also compare CPMs with regional climate models (RCMs – 12 km horizontal resolution) to assess the added value of high-resolution models for impact studies. Further development of our study will lead to assessing the future suitability for vine cultivation and could lead to the construction of a statistical model for future projection of grape yield.

Yield characteristics and environmental effects of plastic covers on table grape with relation to chemical, physical, radiometric and satellite analyses

Climate change poses a significant challenge for global viticulture, with growing evidence of its negative impact on thermal and hydric regimes, both of which are essential for the development of table grapes.

Drought stress shapes the fungal microbiome of grapevine leaves: insights from DNA metabarcoding

Drought stress is an increasingly prevalent environmental challenge with implications for grapevine physiology and productivity, as well as for the microbiomes associated with grapevine tissues.