Terroir 2008 banner
IVES 9 IVES Conference Series 9 Environment friendly nutrition supplying and soil cultivation methods applicable in the upper zone of hillside vineyards

Environment friendly nutrition supplying and soil cultivation methods applicable in the upper zone of hillside vineyards

Abstract

Somló is Hungary’s smallest wine district, however one of the best producing white wines. The majority of vineyard areas are located on the slopes of Somló-hill, situated at the point where the Kisalföld meets Bakonyalja. The upper zone of hillside vineyards was traditionally cultivated by manpower, demanding serious efforts. Nonetheless invested efforts were rewarded by the highest quality, e.g. premium wines. Nowadays machine cultivation also gained ground in these areas. Cultivation by machine had unfavourable effects on the soil in more than one way. Besides ongoing research work focusing on maintaining favourable soil structure extreme weather conditions, dry summers in recent years brought about the necessity to find soil cultivation solutions and technologies able to preserve moisture in soil. In our experiments we have been observing the effects of soil coverage by organic plant debris, turfing and machine cultivation ont the soil and on vines for two vegetation periods. Furthermore we examined the possibilities of N supply in soils with shallow root zone and of unsatisfactory water management in the same area. On the whole for grape growing on such mixed soils of basaltic rubble with shallow root zone, unsatisfactory water management and low mould content it is of primary importance to preserve and maintain adequate moisture and to ensure nitrogen supply among other important nutrients which are provided by the weathering of basalt. 

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

VARGA P. (1), GYŐRFFYNÉ JAHNKE G. (2), MÁJER J. (1), NÉMETH CS. (1), KOCSIS L. (2)

(1) MARD Research Institute for Viticulture and Oenology, Badacsony; 8261 Badacsonytomaj, Római u. 165, Hungary
(2) University of Pannonia Georgikon Faculty of Agriculture, Department of Horticulture 8360 Keszthely, Deák Ferenc u. 16., Hungary

Contact the author

Keywords

soil coverage by organic plant debris, mechanic cultivation, turfing, moisture in soil, supply of nutrients 

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

A comprehensive ecological study of grapevine sensitivity to temperature; how terroir will shift under climate change

Fossil fuel combustion continues to drive increases in atmospheric carbon dioxide, consequently elevating the global annual mean temperature and specifically increasing the growing season temperatures in many of the world’s most important wine growing regions (IPCC 2014; Jones et al 2005). Grapes are sensitive to changes in growing season temperatures, and past models have shown a direct link between warming temperatures and earlier harvest dates (Cook and Wolkovich 2016). Globally, there have been shifts of 1-2 weeks for wine growing regions (Wolkovich et al 2017 and references within). The phenological shifts resulting from growing season temperature increases are documented internationally, and models predicting phenology using temperature are becoming more precise (Parker et al 2011).

Assessing macro-elements contents in vine leaves and grape berries of Vitis vinifera using near-infrared spectroscopy coupled with chemometrics

The cultivated vine (Vitis vinifera) is the main species cultivated in the world to make wine. In 2017, the world wine market represents 29 billion euros in exports, and France contributes 8.2 billion (28%) to this trade, making it a traditional market of strategic importance. Viticulture is therefore a key sector of the French agricultural economy. It is in this context that the nutritional diagnosis of the vine is of real strategic interest to winegrowers. Indeed, the fertilization of the vine is a tool for the winegrower that allows him to influence and regulate the quality of the wine.

Effect of vigour and number of clusters on eonological parameters and metabolic profile of Cabernet Sauvignon red wines

Vegetative growth and yield are reported to affect grape and wine quality. They can be controlled through different techniques linked to vine management. The objective of this research was to determine the effect of vine vigour and number of clusters per vine on physicochemical composition and phenolic profile of red wines. The experiment was carried out during two vegetative cycles, with cv. Cabernet Sauvignon grafted onto Paulsen 1103. Three vine vigour were defined, according to shoot weight at previous harvests, being low, medium and high. Five treatments of number of clusters were used for each vigour, with 15, 22, 29, 36, and 45 clusters per vine. Grapes from all treatments were harvested in the same day from Brix and total acidity criteria. Thirty days after bottling, classical analyzes and phenolic compounds were performed. As results, different responses were obtained from each vintage. In 2020, a dry season from veraison to harvest, grapes and wines obtained from low vigour treatment and 45 clusters per vine was the highest in sugar and alcohol content respectively, while grapes and wines from high vigour and 15 clusters presented the lowest sugar and alcohol content. Total anthocyanins were higher in treatment with low vigour and 15 clusters, while the lowest amounts were found in low vigour with 45 clusters, as well as medium and high vigour with 36 clusters per vine. Total tannins were higher in high vigour with 22 clusters and medium vigour with 29 clusters, while were lower in low vigour with 36 clusters. In 2021, a wet season at harvest, responses were different, and great variations were observed between treatments. As conclusions, yield and vine vigour had strong influence on grape and wine quality, promoting different enological potentials on which can be indicated/used for aging strategies of red and even rosé wines.

isUP-AgrO European project – unlocking the potential for agricultural research on an EU outmost region: boosting ISOPlexis center

The isUP-AgrO project aims to enhance the capability of ISOPlexis – Centre of Sustainable Agriculture and Food Technology, a research unit from the University of Madeira, an outermost region of Portugal.

Impact of canopy management on thiol precursors in white grapes: a six-year field study

The mechanisms behind thiol precursor accumulation in grapes remain incompletely understood, nor are the ways in which they can be improved by agronomic practices. A six-year field trial studied the physiological response of the Swiss white cultivar Vitis vinifera Arvine, rich in varietal thiols and precursors, to canopy management, i.e. leaf removal and canopy height.. Five treatments were set up in a randomized block design to assess the impacts of 1) pre-flowering LR (i.e. pre-flowering or full-flowering stages) and 2) compensating for the leaf area removed in the cluster zone by increasing the trimming height (i.e. 100 or 150 cm canopy height), compared with a non-defoliated control treatment.
Intensive pre-flowering LR severely reduced yield potential (–47% on average) and reduced the concentration of 3-mercaptohexanol precursors (P-3MH) in the must (–21%; p-value < 0.10).