Terroir 2008 banner
IVES 9 IVES Conference Series 9 Environment friendly nutrition supplying and soil cultivation methods applicable in the upper zone of hillside vineyards

Environment friendly nutrition supplying and soil cultivation methods applicable in the upper zone of hillside vineyards

Abstract

Somló is Hungary’s smallest wine district, however one of the best producing white wines. The majority of vineyard areas are located on the slopes of Somló-hill, situated at the point where the Kisalföld meets Bakonyalja. The upper zone of hillside vineyards was traditionally cultivated by manpower, demanding serious efforts. Nonetheless invested efforts were rewarded by the highest quality, e.g. premium wines. Nowadays machine cultivation also gained ground in these areas. Cultivation by machine had unfavourable effects on the soil in more than one way. Besides ongoing research work focusing on maintaining favourable soil structure extreme weather conditions, dry summers in recent years brought about the necessity to find soil cultivation solutions and technologies able to preserve moisture in soil. In our experiments we have been observing the effects of soil coverage by organic plant debris, turfing and machine cultivation ont the soil and on vines for two vegetation periods. Furthermore we examined the possibilities of N supply in soils with shallow root zone and of unsatisfactory water management in the same area. On the whole for grape growing on such mixed soils of basaltic rubble with shallow root zone, unsatisfactory water management and low mould content it is of primary importance to preserve and maintain adequate moisture and to ensure nitrogen supply among other important nutrients which are provided by the weathering of basalt. 

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

VARGA P. (1), GYŐRFFYNÉ JAHNKE G. (2), MÁJER J. (1), NÉMETH CS. (1), KOCSIS L. (2)

(1) MARD Research Institute for Viticulture and Oenology, Badacsony; 8261 Badacsonytomaj, Római u. 165, Hungary
(2) University of Pannonia Georgikon Faculty of Agriculture, Department of Horticulture 8360 Keszthely, Deák Ferenc u. 16., Hungary

Contact the author

Keywords

soil coverage by organic plant debris, mechanic cultivation, turfing, moisture in soil, supply of nutrients 

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Is the consumer ready for innovative fruit wines?

AIM: Wine consumption in the last fifteen years showed a decrease in Europe [1]. New alternatives of wines appeared on the market. Those beverages are obtained by blending wines and fruit juices or flavoring wines with artificial or natural aromas and have medium alcohol content (from 8 to 10.5%) [2]. Recently, an innovative fruit wine has been proposed obtained by co-fermenting grape must and kiwi juice [3] whose potential attractiveness to consumers should be exploited. However, differences in product acceptability and perception, as well as the individuals’ willingness to consume and pay could change in function of subjects socio-demographic characteristics. The target group selected is represented by young adults (18-35 years old) consumption groups.

Discrimination of white wines by Raman spectroscopy coupled with chemometric methods

France is the largest exporter of wine in the world. The export turnover is estimated at 8.7 billion euros in 2017 for 13 million hectoliters sold. This lucrative business pushes scammers to increase the value of some low-end wines by cheating on their appellations, quality or even their origins. These facts lead to losing 1.3 billion euros each year to the European Union’s wine and spirits companies.

Impact of sulfur compounds to the antioxidant stability of white wines

The chemical mechanisms involved in oxidation/reduction potential of wine during winemaking and aging are affecting its color, aroma and taste. Chemical oxidation is one of the major causes of development of off-flavors during ageing1. Thus, the chemical changes in wine during storage should be controlled to ensure the sensory quality of the product and avoid consumer rejection that will compromise the economic value of the product. The 1-hydroxyethyl radical has been recognized as the key radical intermediate in the oxidative reactions in wine2. Based on the kinetic study of POBN-1-hydroxyethyl spin adduct formation in wines initiated via the Fenton reaction, a novel tool was recently developed in our laboratory to quantify the resistance of wines against oxidation3.

Late frost protection in Champagne

Probably one of the most counterintuitive impacts of climate change on vine is the increased frequency of late frost. Champagne, due to its septentrional position is historically and regularly affected by this meteorological hazard. Champagne has therefore developed a strong experience in frost protection with first experiments dating from the end of 19th century. Frost protection can be divided in two parts: passive and active. Passive protection includes all the methods that do not seek to modify the vine’s environment or resistance at the time of frost. The most iconic passive protection in Champagne is the establishment of the individual reserve. This reserve allows to stock a certain quantity of clear wine during a surplus year to compensate a meteorological hazard like frost during the following years. Other common passive methods are the control of planting area (walls, bushes, topography), the choice of grape variety, late pruning, or the impact of grass cover and tillage. Active frost protection is also divided in two parts. Most of the existing techniques tend to modify vine’s environment. Most of the time they provide warmth (candles, heaters, windmills, heating cables…), or stabilise bud’s temperature above a lethal threshold (water sprinkling). The other way to actively fight is to enhance the resistance of buds to frost (elicitors). The Comité Champagne evaluates frost protection methods following three main axes: the efficiency, the profitability, and the environmental impact through a lifecycle assessment. This study will present the results on both passive and active protection following these three axes.

Varietal differences between Shiraz and Cabernet sauvignon wines revealed by yeast metabolism

This study investigated if compositional differences between Shiraz and Cabernet Sauvignon grape varieties could influence the production of yeast-derived compounds. This work was based on the analysis of 40 experimental red wines made in triplicate fermentations from grapes harvested from two consecutive vintages in New South Wales (Australia). Grapes were picked at three maturity stages using berry sugar accumulation as physiological indicator, from nine commercial vineyards located in three different climatic regions (temperate, temperate-warm and warm-hot). A range of 30 yeast-derived wine volatiles including esters and alcohols were quantified by HS/SPME-GC/MS. Ammonia, amino-acids and lipids were analysed in the corresponding grapes. The juice total soluble solids (°Brix) in addition to the wine alcohol and residual sugar levels were also measured. The influence of grape maturity on wine ester composition was also variety dependent, particularly for higher alcohol acetate and ethyl ester of branched acids. This study highlights that varietal differences observed in Shiraz and Cabernet Sauvignon wines involve fermentation-derived compounds irrespective of the site (soil, climate, viticultural practices).