Terroir 2008 banner
IVES 9 IVES Conference Series 9 Environment friendly nutrition supplying and soil cultivation methods applicable in the upper zone of hillside vineyards

Environment friendly nutrition supplying and soil cultivation methods applicable in the upper zone of hillside vineyards

Abstract

Somló is Hungary’s smallest wine district, however one of the best producing white wines. The majority of vineyard areas are located on the slopes of Somló-hill, situated at the point where the Kisalföld meets Bakonyalja. The upper zone of hillside vineyards was traditionally cultivated by manpower, demanding serious efforts. Nonetheless invested efforts were rewarded by the highest quality, e.g. premium wines. Nowadays machine cultivation also gained ground in these areas. Cultivation by machine had unfavourable effects on the soil in more than one way. Besides ongoing research work focusing on maintaining favourable soil structure extreme weather conditions, dry summers in recent years brought about the necessity to find soil cultivation solutions and technologies able to preserve moisture in soil. In our experiments we have been observing the effects of soil coverage by organic plant debris, turfing and machine cultivation ont the soil and on vines for two vegetation periods. Furthermore we examined the possibilities of N supply in soils with shallow root zone and of unsatisfactory water management in the same area. On the whole for grape growing on such mixed soils of basaltic rubble with shallow root zone, unsatisfactory water management and low mould content it is of primary importance to preserve and maintain adequate moisture and to ensure nitrogen supply among other important nutrients which are provided by the weathering of basalt. 

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

VARGA P. (1), GYŐRFFYNÉ JAHNKE G. (2), MÁJER J. (1), NÉMETH CS. (1), KOCSIS L. (2)

(1) MARD Research Institute for Viticulture and Oenology, Badacsony; 8261 Badacsonytomaj, Római u. 165, Hungary
(2) University of Pannonia Georgikon Faculty of Agriculture, Department of Horticulture 8360 Keszthely, Deák Ferenc u. 16., Hungary

Contact the author

Keywords

soil coverage by organic plant debris, mechanic cultivation, turfing, moisture in soil, supply of nutrients 

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

An analytical framework to site-specifically study climate influence on grapevine involving the functional and Bayesian exploration of farm data time series synchronized using an eGDD thermal index

Climate influence on grapevine physiology is prevalent and this influence is only expected to increase with climate change. Although governed by a general determinism, climate influence on grapevine physiology may present variations according to the terroir. In addition, these site-specific differences are likely to be enhanced when climate influence is studied using farm data. Indeed, farm data integrate additional sources of variation such as a varying representativity of the conditions actually experienced in the field. Nevertheless, there is a real challenge in valuing farm data to enable grape growers to understand their own terroir and consequently adapt their practices to the local conditions. In such a context, this article proposes a framework to site-specifically study climate influence on grapevine physiology using farm data. It focuses on improving the analysis of time series of weather data. The analytical framework includes the synchronization of time series using site-specific thermal indices computed with an original method called Extended Growing Degree Days (eGDD). Synchronized time series are then analyzed using a Bayesian functional Linear regression with Sparse Steps functions (BLiSS) in order to detect site-specific periods of strong climate influence on yield development. The article focuses on temperature and rain influence on grape yield development as a case study. It uses data from three commercial vineyards respectively situated in the Bordeaux region (France), California (USA) and Israel. For all vineyards, common periods of climate influence on yield development were found. They corresponded to already known periods, for example around veraison of the year before harvest. However, the periods differed in their precise timing (e.g. before, around or after veraison), duration and correlation direction with yield. Other periods were found for only one or two vineyards and/or were not referred to in literature, for example during the winter before harvest.

Analyse of« terroirs» zoning on cooperative wineries (Côtes du Rhône area, France). Influence on vine agronomic response and on grape quality

Plusieurs caves coopératives de l’AOC Côtes du Rhône se servent des informations du zonage pour la sélection des vendanges en fonction du terroir d’origine, afin d’élaborer des «cuvées terroir» et d’exploiter ainsi le potentiel qualitatif de leurs secteurs.

Impact of agrivoltaics on berry ripening: preliminary results for the white cv. Viosinho

Climate change poses significant challenges for viticulture, particularly in Mediterranean regions like Portugal, where extreme heat and drought conditions are becoming more frequent.

Mechanistic insights into the bioavailability of oleocanthal and oleacein from olive oil in presence of wine active peptides and amino acids

Oleocanthal (OC) and oleacein (OL) are highly bioactive secoiridoids found in olive oil at elevated concentrations, especially when it is produced from unripe olives (Olea europaea L.). Both compounds have been correlated with strong activities against serious diseases through recent clinical trials. The most important clinical trials have been performed in patients against chronic lymphocytic

HAZE RISK ASSESSMENT OF MUSCAT MUSTS AND WINES : WHICH LABORATORY TEST ALLOWS A RELIABLE ESTIMATION OF THE HEATWAVE REALITY?

Wines made from Muscat d’Alexandria grapes exhibit a high haze risk. For this reason, they are systematically treated with bentonite, on the must and sometimes also on wine. In most oenological labora-tories and in companies (trade, cooperatives, independent winegrowers), the test that is by far the most widely used, on a worldwide scale, remains the heat test at 80°C for 30 minutes to 2 hours (and some-times up to 6 hours). The tannin test (sometimes coupled with a heat treatment) and the Bentotest are still used. In this study, we show that all these tests give much higher estimates of the haze risk than the risk assessed by a 24-48h treatment at 42°C, which represents a heat wave.