Terroir 2008 banner
IVES 9 IVES Conference Series 9 Grapevine vigour is correlated with N-mineralization potential of soil from selected cool climate vineyards in Victoria, Australia

Grapevine vigour is correlated with N-mineralization potential of soil from selected cool climate vineyards in Victoria, Australia

Abstract

Excess vigour has been a problem on fertile soils under high rainfall in many cool climate regions of Australia. High and low vigour blocks were selected in vineyards of the cool climate regions of King Valley, Yarra Valley and Mornington Peninsula, Victoria. Laboratory incubations were carried out on soil samples to measure their N-mineralization potential (N0). A strong relationship was observed between N0 and soil total N concentration across all sites. Vine internode length measured between flowering and fruit set could be used as a index of vine vigour and was well correlated with N0, but petiole N concentration was not a useful indicator of vigour at these sites. Sometimes high or low vigour may be due to other factors such soil water supply and soil depth, so that when interpreting a site’s potential for vigour all key soil and climatic variables should be considered.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

R. E. WHITE, L. BALACHANDRA, R. EDIS, and D. CHEN

School of Resource Management, Faculty of Land and Food Resources, The University of Melbourne, Parkville, Victoria 3010

Contact the author

Keywords

excess vigour, internode length, N-mineralization potential, soil N

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Characterization of “territoires” throughout the production of wines obtained with withered grapes: the cases of “Terra della Valpolicella” (Verona) and “Terra della Valle del Piave” (Treviso) in Northern Italy

Dans la définition et la description d’un “territoire” (“terra” en italien), avec les facteurs du milieu et génétiques, un rôle important est joué par ceux agronomiques, techniques et de culture qui contribuent à caractériser le produit d’une zone spécifique.

High-throughput screening of physical-mechanical berry skin traits facilitates targeted selection of breeding material with resistance to Botrytis bunch rot and grape sunburn

The ongoing climate change implies an increasing mean air temperature, which is signified by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased risk for fungal diseases like downy mildew (DM) and Botrytis bunch rot (BBR) as well as for grape sunburn. To meet that demand, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality.

Plastid genomics of Vitis vinifera L. for understanding the molecular basis of  grapevine (Vitis vinifera L.) domestication

The precise molecular mechanisms underlying the domestication of grapevine (Vitis vinifera L.) Are still not fully understood. In the recent years, next-generation sequencing (NGS) of plastid genomes has emerged as a powerful and increasingly effective tool for plant phylogenetics and evolution. To uncover the biological profile of the grapevine domestication process comprehensively, an investigation should encompass both the cultivated varieties (V. vinifera subsp. Vinifera) and their wild ancestors V. vinifera subsp. Sylvestris) across all potential sites of their distribution and domestication.

Gambellara zoning: climate and soil effect on the aromatic fresh and dried grape composition and wine aroma

La région de production de la Gambellara et Recioto di Gambellara DOC (variété Garganega), tout en n’intéressant qu’une surface limitée, présente une certaine variabilité de milieu due à la morphologie du territoire (colline et plaine), à l’état actuel des sols et aux variations climatiques entre les différents sites. Pour les années 2001, 2002

Fertilization Lysimeters provide new insights into the needs and impacts of N nutrition on table grape performance and fruit yield and quality

Table grape production requires adequate nitrogen (N) supply to sustain vine performance and obtain high yields. However, excess agricultural N fertilization is a major source of groundwater contamination and air pollution. Therefore, there is a strong need for empirically based precision N fertilization schemes in vineyards, for optimizing grape yield and quality while minimizing their environmental impact.
Our aim was to unequivocally quantify table grape N requirements, elucidate the drivers of daily N uptake, and quantify the relationship between fertigation N levels and vine growth, fruit yield, composition, and quality. For this, forty ‘Early Sweet’ (early-maturing, white) and ‘Crimson seedless’ (late-maturing, red) vines were grown in 500L drainage-lysimeters for 2 fruiting seasons, while subjected to five continuous N fertigation treatments ranging from 10 to 200 ppm.