Terroir 2008 banner
IVES 9 IVES Conference Series 9 Grapevine vigour is correlated with N-mineralization potential of soil from selected cool climate vineyards in Victoria, Australia

Grapevine vigour is correlated with N-mineralization potential of soil from selected cool climate vineyards in Victoria, Australia

Abstract

Excess vigour has been a problem on fertile soils under high rainfall in many cool climate regions of Australia. High and low vigour blocks were selected in vineyards of the cool climate regions of King Valley, Yarra Valley and Mornington Peninsula, Victoria. Laboratory incubations were carried out on soil samples to measure their N-mineralization potential (N0). A strong relationship was observed between N0 and soil total N concentration across all sites. Vine internode length measured between flowering and fruit set could be used as a index of vine vigour and was well correlated with N0, but petiole N concentration was not a useful indicator of vigour at these sites. Sometimes high or low vigour may be due to other factors such soil water supply and soil depth, so that when interpreting a site’s potential for vigour all key soil and climatic variables should be considered.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

R. E. WHITE, L. BALACHANDRA, R. EDIS, and D. CHEN

School of Resource Management, Faculty of Land and Food Resources, The University of Melbourne, Parkville, Victoria 3010

Contact the author

Keywords

excess vigour, internode length, N-mineralization potential, soil N

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Variability in intrinsic water use efficiency (WUEi) of eight red varieties grown in the center of the Iberian Peninsula during an atypical vintage year

The study was performed in the summer of 2007, the point of confluence of a rather atypical vintage year in the area with abnormally low temperatures after a very humid spring

Control of microbial development in wines elaborated by carbonic maceration

Carbonic Maceration (CM) winemaking is typically used in different European regions. But It is paradoxical that being a traditional processing system and widely used in many wineries, some of the phenomena that take place and the parameters that characterize them are barely known. In this vinification system the intact grape clusters are placed in a carbon dioxide (CO2) enriched medium, and they immediately change from a respiratory metabolism to an anaerobic fermentative metabolism called intracellular fermentation, which is carried out by grape enzymes. But some grapes located in the lower zone of the tank are crushed by the weight of the ones above and release must, which is fermented by yeasts.

Australia’s Wine Future: A Climate Atlas

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Preliminary characterisation of mannoproteins from different wine yeast strains and impact on wine properties

Mannoproteins (MPs) are released from the yeast cell wall during alcoholic fermentation and aging on the lees, and influence aspects of wine quality such as haze formation and colour stability. Yet, as this is a slow process with microbiological and sensory risks, the exogenous addition of extracted MPs poses an efficient alternative. While Saccharomyces cerevisiae has long been studied as a prominent source for MPs extraction, their structure and composition greatly differ between yeast species. This may influence their behaviour in the wine matrix and subsequent impact on wine properties. However, although wine yeast species other than S. cerevisiae possibly present an untapped source of MPs, they are still ill-characterised in terms of chemical composition and influence on wine.

Non-Saccharomyces yeast nitrogen consumption and metabolite production during wine fermentation

Over the last decade, the use of non-Saccharomyces yeasts in the winemaking process has been re-assessed and accepted by winemakers. These yeasts can be used to achieve specific objectives such as lowering the ethanol content, preventing wine spoilage and increasing the production of specific aroma compounds. Since these species are unable to complete alcoholic fermentation, strategies of co- and sequential inoculation of non-Saccharomyces and Saccharomyces cerevisiae have been developed. However, when mixed starter cultures are used, several parameters (e.g. strain yeast, inoculation timing and nutrient competitions) impact the growth of the individual yeasts, the fermentation kinetics and the metabolites/aroma production. In particular, competition for nitrogen compounds could have a major impact, potentially leading to sluggish fermentation when the yeast assimilable nitrogen (YAN) availability is low. Moreover, many aroma compounds produced by the yeasts are directly produced and influenced by nitrogen metabolism such as higher alcohols, acetate esters and ethyl esters which participate in the organoleptic complexity of wine.