Terroir 2008 banner
IVES 9 IVES Conference Series 9 Implications of grapevine row orientation in South Africa

Implications of grapevine row orientation in South Africa

Abstract

Row orientation is a critical long-term viticulture practice, which may have a determining effect on grape and wine quality as well as cost efficiency on a specific terroir selected for cultivation. In the Southern Hemisphere in particular, little information is available upon which recommendations on the orientation of rows within a particular terroir, can be based. Shiraz(clone SH 9C)/101-14 Mgt was planted during 2003 to four orientations, i.e. North-South, East-West, North-East-South-West, and North-West-South-East, in the Breede River Region at the Robertson experiment farm of ARC Infruitec-Nietvoorbij, Robertson, South Africa. Vines are spaced 1.8 x 2.7 m. Photosynthetic active radiation patterns showed highest values in January. Largest differences occurred during grape ripening with the EW orientation maintaining stable, low interior canopy interception, the NS orientation displaying two clear peaks each in the morning and in the afternoon, and the NE-SW and NW-SE orientations showing peaks in the afternoon and morning, respectively. The EW orientation induced higher water retention in the canopy. Naturally higher water deficits were induced by the other row orientations, NE-SW and NW-SE orientations resulting in lowest overall leaf water potential. In line with the movement of the sun, W, SW, S, and SE canopy sides displayed lower average photosynthetic activity. Primary shoot lengths of the treatments were similar, reaching approximately 120 cm. Similar leaf area and leaf mass were found. Longer secondary shoots with higher total leaf area were found for the EW row orientation, resulting in highest secondary leaf area as percentage of primary leaf area.
Berry temperatures increased during the day, generally being 3.5 – 6 0C higher in the afternoon than in the morning. Lowest average berry temperatures for the day were found for EW orientated rows, followed by NS, NW-SE, and NE-SW orientated rows. The latter three treatments had similar berry temperatures that were approximately 1 0C higher than those of the EW row orientation. No large differences in berry temperature between canopy sides were found for any of the row orientations.
Reproductive growth parameters seem to indicate highest fertility for the NS rows and lowest for the EW rows. The lowest number of berries, but largest berries, per bunch was found for EW rows and highest number of berries, but smallest berries, for NS rows. The NE-SW and NW-SE orientations had similar berry number and size. Rot and sunburn differences were small.
The EW row orientation resulted in must soluble solid contents being higher than those of the other treatments. The pH of the treatments was similar. Highest titratable acidity was found for EW and NW-SE row orientations. Slight differences in grape skin colour occurred. Best 0B:TA ratio was found for NS rows and worst ratios for EW and NW-SE rows. Wines of the different row orientations had similar anthocyanin and phenolic concentrations, although slightly lower phenolic contents seemed to occur for the EW row orientation. Preliminary wine evaluation showed good, medium intensity colour with lively fruit for all wines, but particularly for wines made from NS and NE-SW orientations. Vegetative character was perceived for the EW orientation. Data point to different styles of wine, not only in terms of taste and aroma profiles, but also in terms of alcohol content, that may be expected when a particular row orientation is selected. Results are preliminary

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

J.J. Hunter & C.G. Volschenk

ARC Infruitec-Nietvoorbij, Private Bag X5026, 7599 Stellenbosch, South Africa

Contact the author

Keywords

Grapevine row orientation, growth, microclimate, grape composition, wine quality 

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Soil management as a key factor on vineyard behavior under semiarid conditions: effects on soil biological activity, plant water and nutrient status, and grape yield and quality

Aims: Viticulture practices linked with soil management, as cover crops and deficit irrigation, can help to regulate the vineyard behavior reducing in most cases plant vigor and modifying plant water and nutrient status, and as a consequence, grape yield and quality. Also, these practices can modify the soil biological activity mostly related to microbiome diversity and functionality.

Aromatic maturity is a cornerstone of terroir expression in red wine

In this video recording of the IVES science meeting 2023, Stéphanie Marchand (University of Bordeaux, ISVV, INRAE, UMR 1366 OENOLOGIE, Villenave d’Ornon, France) speaks about the aromatic maturity as a cornerstone of terroir expression in red wine. This presentation is based on an original article accessible for free on OENO One.

Nitrogen – Lipid Balance in alcoholic fermentations. Example of Champagne musts

Nutrient availability – nitrogen, lipids, vitamins or oxygen – has a major impact on the kinetics of winemaking fermentations. Nitrogen is usually the growth-limiting nutrient and its availability determines the fermentation rate, and therefore the fermentation duration. In some cases, in particular in Champagne, grape musts have high nitrogen concentrations and are sometimes clarified with turbidity below 50 NTU. In these conditions, lipid deficiencies may occur and longer fermentations can be observed. To better understand this situation, a study was realized using a synthetic medium simulating the composition of a Champagne must : 180 g/L of sugar, 360 mg/L of assimilable nitrogen and a lipid content ranging from 1 to 8 mg/L of phytosterols (mainly β-sitosterol).

An efficient protocol for long-term maintenance of embryogenic calluses of Vitis vinifera

New breeding techniques (NBTS) could play a significant role in the genetic improvement of grapevine by producing new grape varieties with improved quantitative and qualitative characteristics. However, the application of these new techniques faces some technical challenges. One of the challenges is the generation of embryogenic calluses, which are not only difficult to obtain but it is also difficult to maintain their competence during in vitro cultivation, and thus regenerate plants without defects.

First insights on the intra-species diversity in V. berlandieri: environmental adaptation and agronomic performances when used as rootstock

In grafted plants, such as grapevine, increasing the diversity of rootstocks available to growers is an ideal strategy to get adaptation to climate change. The rootstocks used for grapevine are hybrids of various American Vitis, including V. berlandieri. The rootstocks currently used in vineyards are derived from breeding programs involving very small numbers of parental individuals.