Terroir 2008 banner
IVES 9 IVES Conference Series 9 Implications of grapevine row orientation in South Africa

Implications of grapevine row orientation in South Africa

Abstract

Row orientation is a critical long-term viticulture practice, which may have a determining effect on grape and wine quality as well as cost efficiency on a specific terroir selected for cultivation. In the Southern Hemisphere in particular, little information is available upon which recommendations on the orientation of rows within a particular terroir, can be based. Shiraz(clone SH 9C)/101-14 Mgt was planted during 2003 to four orientations, i.e. North-South, East-West, North-East-South-West, and North-West-South-East, in the Breede River Region at the Robertson experiment farm of ARC Infruitec-Nietvoorbij, Robertson, South Africa. Vines are spaced 1.8 x 2.7 m. Photosynthetic active radiation patterns showed highest values in January. Largest differences occurred during grape ripening with the EW orientation maintaining stable, low interior canopy interception, the NS orientation displaying two clear peaks each in the morning and in the afternoon, and the NE-SW and NW-SE orientations showing peaks in the afternoon and morning, respectively. The EW orientation induced higher water retention in the canopy. Naturally higher water deficits were induced by the other row orientations, NE-SW and NW-SE orientations resulting in lowest overall leaf water potential. In line with the movement of the sun, W, SW, S, and SE canopy sides displayed lower average photosynthetic activity. Primary shoot lengths of the treatments were similar, reaching approximately 120 cm. Similar leaf area and leaf mass were found. Longer secondary shoots with higher total leaf area were found for the EW row orientation, resulting in highest secondary leaf area as percentage of primary leaf area.
Berry temperatures increased during the day, generally being 3.5 – 6 0C higher in the afternoon than in the morning. Lowest average berry temperatures for the day were found for EW orientated rows, followed by NS, NW-SE, and NE-SW orientated rows. The latter three treatments had similar berry temperatures that were approximately 1 0C higher than those of the EW row orientation. No large differences in berry temperature between canopy sides were found for any of the row orientations.
Reproductive growth parameters seem to indicate highest fertility for the NS rows and lowest for the EW rows. The lowest number of berries, but largest berries, per bunch was found for EW rows and highest number of berries, but smallest berries, for NS rows. The NE-SW and NW-SE orientations had similar berry number and size. Rot and sunburn differences were small.
The EW row orientation resulted in must soluble solid contents being higher than those of the other treatments. The pH of the treatments was similar. Highest titratable acidity was found for EW and NW-SE row orientations. Slight differences in grape skin colour occurred. Best 0B:TA ratio was found for NS rows and worst ratios for EW and NW-SE rows. Wines of the different row orientations had similar anthocyanin and phenolic concentrations, although slightly lower phenolic contents seemed to occur for the EW row orientation. Preliminary wine evaluation showed good, medium intensity colour with lively fruit for all wines, but particularly for wines made from NS and NE-SW orientations. Vegetative character was perceived for the EW orientation. Data point to different styles of wine, not only in terms of taste and aroma profiles, but also in terms of alcohol content, that may be expected when a particular row orientation is selected. Results are preliminary

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

J.J. Hunter & C.G. Volschenk

ARC Infruitec-Nietvoorbij, Private Bag X5026, 7599 Stellenbosch, South Africa

Contact the author

Keywords

Grapevine row orientation, growth, microclimate, grape composition, wine quality 

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

The film-forming Pichia spp. in a winemaker’s toolbox: A simple isolation procedure and their performance in a mixed-culture fermentation of Vitis vinifera L. cv. Gewürztraminer must

Certain yeast species belonging to the Pichia genus are known to form a distinctive film on grape must and wine. In a mixed-culture type fermentation, Pichia spp. (P. kluyveri in particular) are known to impart beneficial oenological attributes. In this study, we report on an easy isolation method of Pichia spp. from grape must by exploiting their film-forming capacity on media containing 10% ethanol. We isolated and identified two Pichia species, namely Pichia kudriavzevii and Pichia kluyveri, and subsequently co-inoculated them with Saccharomyces cerevisiae to ferment Gewürztraminer musts. Noteworthy differences included a significant increase in the 2-phenethyl acetate levels with the P. kluyveri co-fermentation and a general increase in ethyl esters with the P. kudriavzevii co-fermentation. Both Pichia co-inoculations yielded higher levels of glycerol in the final wines. Based on all the wine parameters we tested, the P. kluyveri strain that was isolated performed similarly to a commercial P. kluyveri strain.

Alimentary film to reduce cork taint and improve wine organoleptic quality

Wine quality may be compromised by mouldy off‒flavours related to cork taint. Although different compounds are considered to be involved in this wine defect, haloanisoles (HAs), and among them the 2,4,6-trichloroanisole (TCA), are claimed as the main responsible.

Irrigation and terroir: two opposite concepts? Point of view of international experts and french consumers

At long term, qualitative irrigation seems to be the most systematic, if not the best, cultural practice for dealing with climate change and yield increases without decrease grape quality.

Diagnosis of soil quality and evaluation of the impact of viticultural practices on soil biodiversity in a vineyard in southwestern France

Viticulture is facing two major changes – climate change and agroecological transition. In both cases, soil quality is seen as a lever to move towards a more sustainable viticulture. However, soil biological quality is little considered in the implementation of viticultural practices. Gascogn’Innov (2017-2022) is an Operational Group funded by the European Innovation Partnership for Agriculture. As such, it brings together winegrowers from the south-west of France, scientists, advisors and technicians, around a project focused on viticultural soil biological functioning and the design of technical routes more respectful toward soil heritage. To achieve this, the project aims to acquire references on the impact of viticultural practices on soil biology from a dynamic way, and to test a methodology to integrate information provided by the soil bioindicators to manage farming systems. A set of indicators of soil biological quality are evaluated in the project: microorganisms (bacteria and fungi abundance and diversity), fauna (abundance and diversity of nematodes and earthworms), physico-chemical characteristics, soil structure assessment and degradation rate of organic matter. Based on a network of 13 plots that have been subject to an initial diagnosis in 2017, several agronomical practices to restore soil fertility are experimented to redesign the cropping system (for instance plant cover, organic matter inputs, reduction of herbicides, mineral fertilizers). System redesign was made in collaboration by winegrowers and an interdisciplinary group of experts (agronomists, biologists). Several indicators are measured on vine and soil at each vintage to assess vine health and productivity. At the end of the project (2021), a final diagnosis was carried out. Gascogn’Innov allowed to create a regional database on the quality of wine-growing soils, which permitted to evaluate the effect of practices according to soil types. Especially, decreasing the intensity of tillage and increasing the duration and diversity of grass coverage tends to increase the abundance of all the organisms studied. This project confirmed the value of soil biological quality indicators to drive the sustainability of practices, but also highlighted the key-role of expertise, in both agronomy and soil biology, to help winegrowers understand and appropriate their soil quality diagnoses.

OENOLOGICAL STRATEGIES FOR THE REMOVAL OF PINKING IN WHITE WINE

The pinking of in white wine is the turning of color from yellow to salmon hue. White wines obtained from certain grape varieties (e.g. Chardonnay, Sauvignon blanc, Riesling, Trebbiano di Lugana) showed to be susceptible to pinking [1] that has been evaluated by an assay providing the addition of hydrogen peroxide. Even if its appearance does not seem to affect the sensory properties [2], strategies are necessary for its removal. Nowadays, the treatment with polyvinylpolipirroline (PVPP) was reported to significantly decrease the pink color [3].