Terroir 2008 banner
IVES 9 IVES Conference Series 9 Implications of grapevine row orientation in South Africa

Implications of grapevine row orientation in South Africa

Abstract

Row orientation is a critical long-term viticulture practice, which may have a determining effect on grape and wine quality as well as cost efficiency on a specific terroir selected for cultivation. In the Southern Hemisphere in particular, little information is available upon which recommendations on the orientation of rows within a particular terroir, can be based. Shiraz(clone SH 9C)/101-14 Mgt was planted during 2003 to four orientations, i.e. North-South, East-West, North-East-South-West, and North-West-South-East, in the Breede River Region at the Robertson experiment farm of ARC Infruitec-Nietvoorbij, Robertson, South Africa. Vines are spaced 1.8 x 2.7 m. Photosynthetic active radiation patterns showed highest values in January. Largest differences occurred during grape ripening with the EW orientation maintaining stable, low interior canopy interception, the NS orientation displaying two clear peaks each in the morning and in the afternoon, and the NE-SW and NW-SE orientations showing peaks in the afternoon and morning, respectively. The EW orientation induced higher water retention in the canopy. Naturally higher water deficits were induced by the other row orientations, NE-SW and NW-SE orientations resulting in lowest overall leaf water potential. In line with the movement of the sun, W, SW, S, and SE canopy sides displayed lower average photosynthetic activity. Primary shoot lengths of the treatments were similar, reaching approximately 120 cm. Similar leaf area and leaf mass were found. Longer secondary shoots with higher total leaf area were found for the EW row orientation, resulting in highest secondary leaf area as percentage of primary leaf area.
Berry temperatures increased during the day, generally being 3.5 – 6 0C higher in the afternoon than in the morning. Lowest average berry temperatures for the day were found for EW orientated rows, followed by NS, NW-SE, and NE-SW orientated rows. The latter three treatments had similar berry temperatures that were approximately 1 0C higher than those of the EW row orientation. No large differences in berry temperature between canopy sides were found for any of the row orientations.
Reproductive growth parameters seem to indicate highest fertility for the NS rows and lowest for the EW rows. The lowest number of berries, but largest berries, per bunch was found for EW rows and highest number of berries, but smallest berries, for NS rows. The NE-SW and NW-SE orientations had similar berry number and size. Rot and sunburn differences were small.
The EW row orientation resulted in must soluble solid contents being higher than those of the other treatments. The pH of the treatments was similar. Highest titratable acidity was found for EW and NW-SE row orientations. Slight differences in grape skin colour occurred. Best 0B:TA ratio was found for NS rows and worst ratios for EW and NW-SE rows. Wines of the different row orientations had similar anthocyanin and phenolic concentrations, although slightly lower phenolic contents seemed to occur for the EW row orientation. Preliminary wine evaluation showed good, medium intensity colour with lively fruit for all wines, but particularly for wines made from NS and NE-SW orientations. Vegetative character was perceived for the EW orientation. Data point to different styles of wine, not only in terms of taste and aroma profiles, but also in terms of alcohol content, that may be expected when a particular row orientation is selected. Results are preliminary

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

J.J. Hunter & C.G. Volschenk

ARC Infruitec-Nietvoorbij, Private Bag X5026, 7599 Stellenbosch, South Africa

Contact the author

Keywords

Grapevine row orientation, growth, microclimate, grape composition, wine quality 

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

NEUROPROTECTIVE AND ANTI-INFLAMMATORY PROPERTIES OF HYDROXYTYROSOL: A PROMISING BIOACTIVE COMPONENT OF WINE

Hydroxytyrosol (HT) is a phenolic compound present in olives, virgin olive oil and wine. HT has attracted great scientific interest due to its biological activities which have been related with the ortho-dihydroxy conformation in the aromatic ring. In white and red wines, HT has been detected at concentrations ranging from 0.28 to 9.6 mg/L and its occurrence has been closely related with yeast metabolism of aromatic amino acids by Ehrlich pathway during alcoholic fermentation. One of the most promising properties of this compound is the neuroprotective activity against pathological mechanisms related with neurode-generative disorders including Alzheimer’s and Parkinson’s disease.

Identification of loci associated with specialised metabolites in Vitis vinifera

Secondary (or specialised) metabolites such as terpenes and phenolic compounds are produced by plants for various roles which include defence against pathogens and herbivores, protection against abiotic stress, and plant signalling. Additionally, these metabolites influence grapevine quality traits such as colour, aroma, taste, and nutritional value. However, the biosynthesis of these metabolites is often complex and controlled by multiple genes which in grapevine are predominantly uncharacterised.

On the impact of preformed α-dicarbonyls in the production of Strecker aldehydes. Exploring the addition of sacrificial amino acids as a tool to reduce Strecker aldehydes production

The reaction between Strecker amino acids and α-dicarbonyls is a key pathway in the formation of Strecker aldehydes (SA), which are crucial oxidation-related odorants in wine [1].

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.

Characterization of bunch compactness and identification of associated genes in a diverse collection of cultivars of Vitis vinifera L.

Compactness is a complex trait of V. vinifera L. and is defined ultimately by the portion of free space within the bunch which is not occupied by the berries. A high degree of compactness results in poor ventilation and consequently a higher susceptibility to fungal diseases, diminishing the quality of the fruit. The easiness to conceptualize the trait and its importance arguably contrasts with the difficulty to measure and quantify it. However, recent technical advancements have allowed to study this attribute more accurately over the last decade. Our main objective was to explore the underlying genetics determining bunch compactness by applying updated phenotyping methods in a collection of V. vinifera L. cultivars with a wide genetic diversity.