Terroir 2008 banner
IVES 9 IVES Conference Series 9 Implications of grapevine row orientation in South Africa

Implications of grapevine row orientation in South Africa

Abstract

Row orientation is a critical long-term viticulture practice, which may have a determining effect on grape and wine quality as well as cost efficiency on a specific terroir selected for cultivation. In the Southern Hemisphere in particular, little information is available upon which recommendations on the orientation of rows within a particular terroir, can be based. Shiraz(clone SH 9C)/101-14 Mgt was planted during 2003 to four orientations, i.e. North-South, East-West, North-East-South-West, and North-West-South-East, in the Breede River Region at the Robertson experiment farm of ARC Infruitec-Nietvoorbij, Robertson, South Africa. Vines are spaced 1.8 x 2.7 m. Photosynthetic active radiation patterns showed highest values in January. Largest differences occurred during grape ripening with the EW orientation maintaining stable, low interior canopy interception, the NS orientation displaying two clear peaks each in the morning and in the afternoon, and the NE-SW and NW-SE orientations showing peaks in the afternoon and morning, respectively. The EW orientation induced higher water retention in the canopy. Naturally higher water deficits were induced by the other row orientations, NE-SW and NW-SE orientations resulting in lowest overall leaf water potential. In line with the movement of the sun, W, SW, S, and SE canopy sides displayed lower average photosynthetic activity. Primary shoot lengths of the treatments were similar, reaching approximately 120 cm. Similar leaf area and leaf mass were found. Longer secondary shoots with higher total leaf area were found for the EW row orientation, resulting in highest secondary leaf area as percentage of primary leaf area.
Berry temperatures increased during the day, generally being 3.5 – 6 0C higher in the afternoon than in the morning. Lowest average berry temperatures for the day were found for EW orientated rows, followed by NS, NW-SE, and NE-SW orientated rows. The latter three treatments had similar berry temperatures that were approximately 1 0C higher than those of the EW row orientation. No large differences in berry temperature between canopy sides were found for any of the row orientations.
Reproductive growth parameters seem to indicate highest fertility for the NS rows and lowest for the EW rows. The lowest number of berries, but largest berries, per bunch was found for EW rows and highest number of berries, but smallest berries, for NS rows. The NE-SW and NW-SE orientations had similar berry number and size. Rot and sunburn differences were small.
The EW row orientation resulted in must soluble solid contents being higher than those of the other treatments. The pH of the treatments was similar. Highest titratable acidity was found for EW and NW-SE row orientations. Slight differences in grape skin colour occurred. Best 0B:TA ratio was found for NS rows and worst ratios for EW and NW-SE rows. Wines of the different row orientations had similar anthocyanin and phenolic concentrations, although slightly lower phenolic contents seemed to occur for the EW row orientation. Preliminary wine evaluation showed good, medium intensity colour with lively fruit for all wines, but particularly for wines made from NS and NE-SW orientations. Vegetative character was perceived for the EW orientation. Data point to different styles of wine, not only in terms of taste and aroma profiles, but also in terms of alcohol content, that may be expected when a particular row orientation is selected. Results are preliminary

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

J.J. Hunter & C.G. Volschenk

ARC Infruitec-Nietvoorbij, Private Bag X5026, 7599 Stellenbosch, South Africa

Contact the author

Keywords

Grapevine row orientation, growth, microclimate, grape composition, wine quality 

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Soil, foliar, and juice nitrogen application: influence on fruit and wine for Chardonel grown in Virginia

Nitrogen (N) is applied in the vineyard or the winery in wine production systems. The influence of different routes of N application is not well understood.

Recovery and purification of proteins from grape seed byproducts using proteomic and separative techniques

Grape seeds account for around 5% of the weight of the whole grape berry, representing approximately 40%-50% of the solid by-products that the different wine industries generate during the winemaking process.

Impact of changing climatic factors on physiological and vegetative growth

Scientific information on grapevine response to predicted levels of climate parameters is scarce and not sufficient to properly position the Wine Industry for the future. It is critical that the combined effects of increased temperature and CO2 on grapevines should be examined, without omitting the important link to soil water conditions. The purpose of this study is to quantify the effects of envisioned changes in climatic parameters on the functioning and growth of young grafted grapevines under controlled conditions, simulating expected future climate changes. Scientific knowledge of precisely how the newly-planted grapevine will react morphologically, anatomically and physiologically (at leaf, root and whole plant level) to the expected changes in important climatic parameters will enable producers to make better-informed decisions regarding terroir, cultivar and rootstock choices as well as the adaptation of current cultivation practices.

The vineyard of the future: producing more with less  

similar to other agricultural producers, grape growers face increasing pressure to improve productivity and production efficiency while reducing their environmental impact. Threats due to extreme climate events, as well as the uncertainty of available water and labor, provide significant challenges to the future of grape production. This presentation will provide an integrated overview of the tools and technologies being developed to address these issues and to help growers manage vineyards in the future, including vineyard design, remote and proximal sensing, automation, data management and decision support systems, and germplsm improvement. The potential impact of these advancements on vineyard productivity, fruit quality, and sustainability will be discussed.

Radiation-associated effects on regulated deficit irrigation management in grapevine cv. Cabernet Sauvignon

The main challenge of regulated deficit irrigation (RDI) research is to isolate the factors that come with RDI, the direct effect of plant water status from the indirect ones like increased radiation and temperature changes on the cluster zone. This study aims to isolate the effects of vine water status from the effects of increased radiation on the phenolic composition of grapes subjected to RDI.
A three-year study on an RDI experiment where radiation was controlled was implemented in a commercial vineyard of Cabernet Sauvignon in Chile. Four RDI treatments based on partial evapotranspiration (ET) irrigation were established. Irrigation treatments were 100% ET, 70% ET, 50-100% ET (50% ET before veraison and 100% ET afterward), and 35-100% ET (35% ET before veraison and 100% ET afterward).