Terroir 2020 banner
IVES 9 IVES Conference Series 9 Island and coastal vineyards in the context of climate change

Island and coastal vineyards in the context of climate change

Abstract

Aim: The notion of “terroir” enables the attribution of distinctive characteristics to wines from the same region. Climate change raises issues about viticulture, especially the growth of the vines and even more importantly the economic situation of actual wine-growing regions (Schultz and Jones 2010; Quénol 2014). Several studies have addressed the impacts of climate change on viticulture in many wine-growing regions of the world, but only a few have focused on the potential of island and coastal vineyards. However, in the context of climate change, ultramarine and coastal vineyards could become increasingly coveted according to their specific climatic conditions. In regions subject to significant warming, thermal regulation and oceanic influence can limit extremes temperatures, which could be a major advantage for grapevine production. This contribution, first step of a spatial optimization approach to define suitable agro-climatic patterns, will present a typology of these vineyards, to understand their specificities and their adaptability.

Methods and Results: An in-depth bibliographical search has been conducted to provide a global inventory and to highlight relevant variables to describe and categorize the world’s island wine-growing regions. From this approach, three main themes have been defined as variables: climate characteristics, vineyards characteristics and cultivars and associated management systems.

Climate plays a very important role in terroir, and especially temperatures, which determine the regional characteristics of viticulture (van Leeuwen et al., 2004; Hall and Blackman, 2019). In this study we consider the following climatic data: seasonal[1] average temperatures, annual and seasonal1 mean daily amplitude, completed by the average annual sunshine duration, average annual precipitation, winds and sea sprays.

Concerning vineyard characteristics, topological aspects like altitude or distance to ocean can limit diurnal and extremes temperatures (Bonnardot et al., 2001; Koufos et al., 2013; Fourment et al., 2017; Heras-Roger et al., 2018). Vineyards soils and especially soils’ composition, depth and water holding capacity are also completed. Vineyards’ characteristics were supplemented by economic data like surface area (ha), production (hl), market target and appellations. 

Due to their specific climatic conditions and/or because their relative isolation from other continents, many islands harbour autochthonous and rare varieties (Scherrer et al., 2009). In connection with vine variety, rootstock and diseases variables are integrated in the typology. Moreover, several coastal and island vineyards integrate traditional practices to manage the hydric stress without irrigation (i.e. mitigate wind effects on plants) (Drumonde-Neves et al., 2017; Heras-Roger et al., 2018). These practices were highlighted with management systems variables (implementation and management system, space between vines and rows, vine density, mechanization and irrigation system).

When applied to vineyards of Lanzarote, this approach describes structural elements of ultramarine vineyards. In 2009, Canarian viticulture represented 36% of total cultivated area of the archipelago, and 2.9% of total Spanish viticulture. In Lanzarote’s island, the climate is defined as subtropical with low precipitation (average of 150 mm/year), warm temperatures throughout the year and a high average annual sunshine duration (3000 h/year). 

Lanzarote’s island has a low relief and vineyards are planted on volcanic soils. Poured thick layers of volcanic ashes called “picóns” are added at the base of the vine stock. These porous volcanic granules have a great thermal inertia. Indeed, during the day picóns store heat and give it back to the plant at night. Picóns also have good water retention capacity (Troll et al., 2017; González Morales et al., 2015). Lanzarote’s vineyards under the appellation “Denominación de Origen Protegida de Lanzarote” were about 1850 ha in 2016-2017, for a production above 4330 hl and 1800 winegrowers (DO Lanzarote, 2020). The target market is local in scope. Mainly due to the isolation of the archipelago from the mainland, phylloxera is not present in the vineyards of Lanzarote. Vines are not grafted and Malvasia represents ¾ of the vine stock of the island. Vine varieties such as Listàn blanco, Moscatel de Alejandria, Verdello and Gual are often planted to produce dry and sweet white wines. Listàn negro and Negramoll varieties are preferred to produce red wine (DO Lanzarote, 2020). Low-growing vines are planted in drilled holes, and low walls of volcanic rocks are built to protect them from drought and hot drying winds. Due to their specific implementation, vines are widely spaced (400-500 m between them), yields are low and mechanization is not possible. 

This information has been documented and summarised for each wine-growing region. Thanks to this approach, key elements of insular vineyards can be described with generic indicators.  The resulting typology enables comparisons between different wine-growing regions with a generic framework.

Conclusions:

This first step of characterization of vineyard variables highlights the specificities of insular and coastal vineyards. Then, discriminant characteristics will be exploited in a process of spatial optimization in order to identify suitable agroclimatic patterns for different climate change scenarios. The main objective is to implement an approach under multiple constraints (climatic, agronomic, spatial, etc.). The results expected will be compromises between these several constraints. 

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Jeanne Thibault1*, Hervé Quénol2, Cyril Tissot1

1UMR 6554 LETG Brest, Institut Universitaire Européen de la Mer, 29280 Plouzané, France
2UMR 6554 LETG Rennes, Université Rennes 2, Place Recteur H. Le Moal, 35043 Rennes, France

Contact the author

Keywords

Viticulture, insularity, coastal, climate change, adaptation

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

The impacts of frozen material-other-than-grapes (MOG) on aroma compounds of red wine varieties

An undesirable note called “floral taint” has been observed in red wines by winemakers in the Niagara region caused by large volumes of frozen leaves and petioles [materials-other-than-grapes (MOG)] introduced during mechanical harvest and subsequent winemaking late in the season. The volatiles, which we hypothesized are responsible, are primarily terpenes, norisoprenoids, and specific esters in frozen leaves and petioles. The purpose of this study was to investigate the volatile compounds which may cause the floral taint problem and explore how much of them (thresholds) may lead to the problem. Also, the glycosidic precursors of some of these compounds were analyzed to see the changes happening during frost events.

Aromatic profile of six different clones of Chardonnay grape berries in Minas Gerais (Brazil)

Aromas are one of the key points in food analysis since they are related to character, quality and consequently consumer acceptance. It is not different in the winery industry, where the aromatic profile is a combination of viticultural and oenological practices. Based on the development of more aromatic clones and on the potential to produce sparkling wines at Caldas, in the southern region of Minas Gerais (Brazil) (21°55´S and 46°23´W, altitude 1,100m), the aim of this work was the determination of volatile compounds in six different clones of Chardonnay grape berries to better understand which compounds add bouquet to the wine, and additionally comprehend the impacts of the edaphoclimatic and annual conditions on the improvement of grape-growing and winemaking practices.

Improving stilbenes in vitis Labrusca L. Grapes through methyl jasmonate applications

Grapes (Vitis sp.) are considered a major source of phenolic compounds such as flavonols, anthocyanins and stilbenes. Studies related to the beneficial effects of these compounds on health have encouraged research aimed at increasing their concentration in fruits. On this behalf, several plant growth regulators such as jasmonic acid and its volatile ester, methyl-jasmonate (MeJa), have demonstrated promising results in many fruits. However, Brazilian subtropical climate might interfere on treatment response. The present study aims to evaluate the application of MeJa in the pre-harvest period in Concord and Isabel Precoce grapes (Vitis labrusca L.).

Service crop effects on grapevine water and nitrogen status and yield under Mediterranean climate

Service crops in vineyard can provide multiple ecosystem services but they can also lead to competition with the grapevine for soil resources in the Mediterranean region due to potential severe droughts (Garcia et al., 2018). One of the levers of action to manage this competition is the choice of species adapted in terms of growth dynamics and water and nutrients’ needs. The objectives of this study were to determine the effect of temporary service crops on grapevine water and nitrogen status and grapevine yield and yield components in a Mediterranean vineyard.

Impact of deficit irrigation strategies on terpene concentration in Gewürztraminer grapes

Deficit irrigation is a viticultural practice often applied to improve the phenolic composition of red grapes and wines. However, the impact of this practice on grape terpenes – key aromatics for several grapes and wines – remains largely unknown. This study investigated the impact of deficit irrigation strategies on free and glycosylated terpenes in Gewürztraminer grapes. In a field study conducted in Oliver, BC, in 2016, 2017, and 2018, deficit irrigation regimes were applied to Gewürztraminer vines at different developmental stages (pre-veraison = Early Deficit, ED; post-veraison = Late Deficit, LD; throughout the season = Prolonged Deficit, PD). A well-irrigated control (CN) treatment was also established.