Terroir 2008 banner
IVES 9 IVES Conference Series 9 Influence of canopy management on yield, grape and wine quality. Relationship between the potassium content and pH in must and wine of the cultivar “Tempranillo”

Influence of canopy management on yield, grape and wine quality. Relationship between the potassium content and pH in must and wine of the cultivar “Tempranillo”

Abstract

In recent years red wines are being produced in Andalusia from indigenous and foreign grape varieties, one of which is the Spanish variety Tempranillo.
In young vineyards the vegetation/production ratio tends to be unbalanced, whereby the must obtained is not of high quality. To achieve a better vegetation/grape production ratio different ways of managing the canopy have been tested. The study has been carried out on Vitis Vinífera L. Cvs. Tempranillo in a vineyard in the province of Cadiz in southern Spain, a zone considered to have a warm climate.
Canopy management techniques used are as follows: pruning later, removal of bunch, training higher and more buds. Pruning later causes less vegetation, yield and a reduction in berry size. Removing the bunch induces more vegetation and increases berry size increasing the potassium content and pH. Higher training improves yield. The higher number of buds increases production and vegetative development.
These techniques improve aeration and photosynthetic activity. In the area in which the bunches are located, the temperature is higher and the percentage humidity is lower relative to the control.
Despite having succeeded in increasing total acidity of the must in some cases, the pH of same was not lowered as the high concentrations of potassium salify the acids and raise the pH.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Belén PUERTAS, Mª José SERRANO, Mª Jesús JIMÉNEZ, Emma CANTOS

IFAPA Centro Rancho de la Merced
Ctra. Trebujena, Km 3.2, 11471, Jerez de la Frontera, España
Consejería de Innovación, Ciencia y Empresa. Junta de Andalucía

Contact the author

Keywords

Canopy management, Yield, Potassium, pH, Tempranillo

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

A population genetic study of Vitis vinifera L. subsp. sylvestris Gmelin based on 3.000 individuals from 20 countries

Until the 19th century, the wild form of cultivated grapevines (vitis vinifera l. subsp. sylvestris gmelin, v. sylvestris) was ubiquitous in many european and west asian regions. However, many factors like deforestation, the intensification of agriculture, or the introduction of several pests and pathogens decimated its presence in these growing sites, and natural populations are now mostly restricted to river-bank forests and creeks with specific soil and climate conditions. in fact, v. sylvestris is now considered an endangered subspecies that is protected by law in many european countries to prevent its loss.

Protection of genetic diversity: maintenance and developements of a grapevine genebank in Hungary

Among the items preserved in gene banks, the old standard and autochthonous varieties represent an increasing value, since these varieties may have properties to make their cultivation more effective under changing climatic conditions. The increasingly extreme weather is a huge challenge for the viticulture. Collectional varieties can also play important role in protection against pests and pathogens. A genebank ensures not only the preservation of rare varieties, but also gives the opportunity for more knowledge and research of these varieties.

Climate and the evolving mix of grape varieties in Australia’s wine regions

The purpose of this study is to examine the changing mix of winegrape varieties in Australia so as to address the question: In the light of key climate indicators and predictions of further climate change, how appropriate are the grape varieties currently planted in Australia’s wine regions? To achieve this, regions are classified into zones according to each region’s climate variables, particularly average growing season temperature (GST), leaving aside within-region variations in climates. Five different climatic classifications are reported. Using projections of GSTs for the mid- and late 21st century, the extent to which each region is projected to move from its current zone classification to a warmer one is reported. Also shown is the changing proportion of each of 21 key varieties grown in a GST zone considered to be optimal for premium winegrape production. Together these indicators strengthen earlier suggestions that the mix of varieties may be currently less than ideal in many Australian wine regions, and would become even less so in coming decades if that mix was not altered in the anticipation of climate change. That is, grape varieties in many (especially the warmest) regions will have to keep changing, or wineries will have to seek fruit from higher latitudes or elevations if they wish to retain their current mix of varieties and wine styles.

Rootstock-scion contributions to seasonal water and light use diversity under field conditions

Cultivar and rootstock selection are two well-known strategies for adapting vine production in challenging environments. Despite the vast diversity of rootstocks and cultivars, their effective contribution to grapevine sustainable development and acclimation to changing growing conditions remains an open question. The use of robust and prompt monitoring tools can allow a powerful screening of the water status of the vineyard before considering a further detailed characterization. This study leveraged new tools to monitor the stomatal conductance (gs), transpiration rate (E), and quantum efficiency of photosystem II (ᶲPSII) throughout a season, from pre-veraison to after-harvest.

Investigation on harvesting period choices for correct interpretation of experimental results

Happens too often in scientific papers to find the same harvesting period of a cultivar, although the used treatment influence a maturity curve of investigated thesis.
This inevitably leads to wrong conclusions when comparing the treatment effects, since obtained on maturity stages more or less far from those technologically correct.