Terroir 2008 banner
IVES 9 IVES Conference Series 9 Influence of canopy management on yield, grape and wine quality. Relationship between the potassium content and pH in must and wine of the cultivar “Tempranillo”

Influence of canopy management on yield, grape and wine quality. Relationship between the potassium content and pH in must and wine of the cultivar “Tempranillo”

Abstract

In recent years red wines are being produced in Andalusia from indigenous and foreign grape varieties, one of which is the Spanish variety Tempranillo.
In young vineyards the vegetation/production ratio tends to be unbalanced, whereby the must obtained is not of high quality. To achieve a better vegetation/grape production ratio different ways of managing the canopy have been tested. The study has been carried out on Vitis Vinífera L. Cvs. Tempranillo in a vineyard in the province of Cadiz in southern Spain, a zone considered to have a warm climate.
Canopy management techniques used are as follows: pruning later, removal of bunch, training higher and more buds. Pruning later causes less vegetation, yield and a reduction in berry size. Removing the bunch induces more vegetation and increases berry size increasing the potassium content and pH. Higher training improves yield. The higher number of buds increases production and vegetative development.
These techniques improve aeration and photosynthetic activity. In the area in which the bunches are located, the temperature is higher and the percentage humidity is lower relative to the control.
Despite having succeeded in increasing total acidity of the must in some cases, the pH of same was not lowered as the high concentrations of potassium salify the acids and raise the pH.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Belén PUERTAS, Mª José SERRANO, Mª Jesús JIMÉNEZ, Emma CANTOS

IFAPA Centro Rancho de la Merced
Ctra. Trebujena, Km 3.2, 11471, Jerez de la Frontera, España
Consejería de Innovación, Ciencia y Empresa. Junta de Andalucía

Contact the author

Keywords

Canopy management, Yield, Potassium, pH, Tempranillo

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Optimizing stomatal traits for future climates

Stomatal traits determine grapevine water use, carbon supply, and water stress, which directly impact yield and berry chemistry. Breeding for stomatal traits has the strong potential to improve grapevine performance under future, drier conditions, but the trait values that breeders should target are unknown. We used a functional-structural plant model developed for grapevine (HydroShoot) to determine how stomatal traits impact canopy gas exchange, water potential, and temperature under historical and future conditions in high-quality and hot-climate California wine regions (Napa and the Central Valley). Historical climate (1990-2010) was collected from weather stations and future climate (2079-99) was projected from 4 representative climate models for California, assuming medium- and high-emissions (RCP 4.5 and 8.5). Five trait parameterizations, representing mean and extreme values for the maximum stomatal conductance (gmax) and leaf water potential threshold for stomatal closure (Ψsc), were defined from meta-analyses. Compared to mean trait values, the water-spending extremes (highest gmax or most negative Ysc) had negligible benefits for carbon gain and canopy cooling, but exacerbated vine water use and stress, for both sites and climate scenarios. These traits increased cumulative transpiration by 8 – 17%, changed cumulative carbon gain by -4 – 3%, and reduced minimum water potentials by 10 – 18%. Conversely, the water-saving extremes (lowest gmax or least negative Ψsc) strongly reduced water use and stress, but potentially compromised the carbon supply for ripening. Under RCP 8.5 conditions, these traits reduced transpiration by 22 – 35% and carbon gain by 9 – 16% and increased minimum water potentials by 20 – 28%, compared to mean values. Overall, selecting for more water-saving stomatal traits could improve water-use efficiency and avoid the detrimental effects of highly negative canopy water potentials on yield and quality, but more work is needed to evaluate whether these benefits outweigh the consequences of minor declines in carbon gain for fruit production.

AROMA AND SENSORY CHARACTERIZATION OF XINOMAVRO RED WINES FROM DIFFERENT GREEK PROTECTED DESIGNATIONS OF ORIGIN, EFFECT OF TERROIR CHARACTERISTICS

The quality of wines has often been associated with their geographical area of production. The aim of this work was to characterize Protected Designation of Origin (PDO) Xinomavro red wines from different geographical areas of Amyndeon and Naoussa in Northern Greece, elaborated with variables that contribute to their differentiation, such as soil characteristics, altitude, monthly average temperature and rainfall.
Xinomavro fruit parcels from different vineyards within the two PDO zones (5 PDO Naoussa and 6 PDO Amyndeon) were vinified following a standard winemaking process. A total of 25 aroma compounds were quantified using gas chromatography-mass spectrometry (GC-MS) with simultaneous full scan and selected ion monitoring for data recording, and odor activity values (OAVs) were determined.

«Nektar» -the new red variety wine grape aromatic high quality

The multi-annual study of the International Genetic Bank of the Grape Vine has shown that red varieties are enough, but the red varieties that produce high-quality red wine are minimal.

Scientific research for an «Ad Maiora 4.1C» application «A step back towards the future universally sustainable EME4.1C». A concrete example of forward-looking and revolutionary entrepreneurial choices in the vine and wine sector

In 1979 an enlightened and farsighted business owner in an area and in an activity unknown to him and in 120 hectares of land cultivated with corn and wheat expressed to one of us that he wanted to start a business in the wine sector. The first innovative “Vigna Dogarina Scientific Applicative Project” has become famous and harmoniously inserted in and with the “Territoir” of eastern Veneto in northeastern Italy. The revolutionary project allowed one of us: 1. to put into practice results of research related to the applied philosophy, vision, methodology of the “Great MetaEthic Chain 4.1C®” algorithm of the “Conegliano Campus 5.1C®” that considers all material, immaterial, spiritual, technical, economic, environmental, social, existential, relational, ethical, MetaEthical factors with basic indexing in a harmonious chain “ 4.1C®” and application “5.1C®”, 2. to implement:

Metabolomics of grape polyphenols as a consequence of post-harvest drying: on-plant dehydration vs warehouse withering

A method of suspect screening analysis to study grape metabolomics, was developed [1]. By performing ultra-high performance liquid chromatography (UHPLC) – high-resolution mass spectrometry (HRMS) analysis of the grape extract, averaging 320-450 putative grape compounds are identified which include mainly polyphenols. Identification of metabolites is performed by a new HRMS-database of putative grape and wine compounds expressly constructed (GrapeMetabolomics) which currently includes around 1,100 entries.