Terroir 2008 banner
IVES 9 IVES Conference Series 9 Influence of organic plant treatment on the terroir of microorganisms

Influence of organic plant treatment on the terroir of microorganisms

Abstract

Several factors like vineyard site, climate, grape variety, ripeness, physical health of the grapes and pest management influence the populations of indigenous yeasts on grapes and later on in spontaneous fermentations. During spontaneous fermentations, so called “wild yeasts” could significantly influence the wine aroma. Some authors certify more complexity and an increase of wine quality to these fermentations. A widespread opinion is that spontaneous fermentation can help to emphasize the characteristics of a specific geographical area or even of one vineyard site.
This was checked in a three years experimental period testing different pest management strategies to replace or reduce copper and sulphur and comparing integrated, organic and biodynamic strategies. Alternatives to copper or sulphur treatments could however have an impact on the aroma profiles, as they alter the composition of natural yeast populations in the vineyard or lead to changes in yeast metabolism. This was tested with several alternative strategies compared to organic-standard and integrated variants. Effects on spontaneous flora, fermentation course and aroma profiles were analysed.
Yeast populations on grapes and at different stages of grape and must processing were isolated and determined using RFLP analysis of the ITS-region.
Hanseniaspora uvarum and Metschnikowia pulcherrima were the dominating species on the grapes in all variants. There was no correlation between the population dynamics of yeast during the processing and fermentation and the different pest management strategies.
In this survey the processing and the ecosystem winery seem to have a more important influence on yeast diversity than the microflora composition on grapes.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

STÖLBEN T (1,2), RÜCK C (1,2), HERRBRUCK T (1,2), KAUER R (1), VON WALLBRUNN C (2)

(1) Fachbereich Geisenheim, Fachhochschule Wiesbaden, Von-Lade-Str. 1, 65366 Geisenheim
(2) Fachgebiet Mikrobiologie u. Biochemie, Forschungsanstalt Geisenheim, Von-Lade-Str. 1, 65366 Geisenheim

Contact the author

Keywords

 yeast, spontaneous fermentation, organic pest management, RFLP, sensory analysis

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Analysis of Cabernet Sauvignon and Aglianico winegrape (V. vinifera L.) responses to different pedo-climatic environments in southern Italy

Water deficit is one of the most important effects of climate change able to affect agricultural sectors. In general, it determines a reduction in biomass production, and for some plants, as in the case of grapevine, it can endorse fruit quality. The monitoring and management of plant water stress in the vineyard

Targeted UHPLC-QqQ-MS/MS metabolomics for phenol identification in grapevine and wine: study of a Tempranillo clone with a dark-blue berry colour

Grapevine vegetative multiplication allows the accumulation of spontaneous mutations and increase intra-cultivar genetic diversity that can be exploited to maintain grape wine quality

Intra-block variations of vine water status in time and space

Vine water status was measured on 96 plots of three vines inside a vineyard block of 0.28 ha during three years: 2003, 2004 and 2005. Three physiological indicators were implemented: stem water potential, carbon isotope discrimination measured on grape sugars at ripeness (δ13C) and canopy temperature measured by high resolution remote sensing. For stem water potential, measurements were taken on every single vine of each plot.

Function, barriers, and the environmental benefits of reuse bottle system for wine

With 0.3 to 0.7 kg CO2eq per 0.75 L wine, the glass bottle is the main contributor to the carbon footprint of a bottle of wine.

Phenolic extraction and dissolved oxygen concentration during red wines fermentations with Airmixig M.I.™

During red wine fermentation, the extraction of phenolics compounds and sufficient oxygen provision are critical for wine quality [1,2]. In this trial, we aimed at evaluating the kinetics of phenolic extraction and dissolved oxygen during red wine fermentations using the airmixing system. Twenty lots of red grape musts were fermented in 300.000 L tanks, equipped with airmixing, using two injection regimes (i.e., high and low intensity, and high and low daily frequency). An oxygen analyzer was introduced into the tanks in order to record the concentration of dissolved oxygen over time.