Terroir 2008 banner
IVES 9 IVES Conference Series 9 Influence of organic plant treatment on the terroir of microorganisms

Influence of organic plant treatment on the terroir of microorganisms

Abstract

Several factors like vineyard site, climate, grape variety, ripeness, physical health of the grapes and pest management influence the populations of indigenous yeasts on grapes and later on in spontaneous fermentations. During spontaneous fermentations, so called “wild yeasts” could significantly influence the wine aroma. Some authors certify more complexity and an increase of wine quality to these fermentations. A widespread opinion is that spontaneous fermentation can help to emphasize the characteristics of a specific geographical area or even of one vineyard site.
This was checked in a three years experimental period testing different pest management strategies to replace or reduce copper and sulphur and comparing integrated, organic and biodynamic strategies. Alternatives to copper or sulphur treatments could however have an impact on the aroma profiles, as they alter the composition of natural yeast populations in the vineyard or lead to changes in yeast metabolism. This was tested with several alternative strategies compared to organic-standard and integrated variants. Effects on spontaneous flora, fermentation course and aroma profiles were analysed.
Yeast populations on grapes and at different stages of grape and must processing were isolated and determined using RFLP analysis of the ITS-region.
Hanseniaspora uvarum and Metschnikowia pulcherrima were the dominating species on the grapes in all variants. There was no correlation between the population dynamics of yeast during the processing and fermentation and the different pest management strategies.
In this survey the processing and the ecosystem winery seem to have a more important influence on yeast diversity than the microflora composition on grapes.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

STÖLBEN T (1,2), RÜCK C (1,2), HERRBRUCK T (1,2), KAUER R (1), VON WALLBRUNN C (2)

(1) Fachbereich Geisenheim, Fachhochschule Wiesbaden, Von-Lade-Str. 1, 65366 Geisenheim
(2) Fachgebiet Mikrobiologie u. Biochemie, Forschungsanstalt Geisenheim, Von-Lade-Str. 1, 65366 Geisenheim

Contact the author

Keywords

 yeast, spontaneous fermentation, organic pest management, RFLP, sensory analysis

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

ALCOHOLIC FERMENTATION DRIVES THE SELECTION OF OENOCOCCUS OENI STRAINS IN WINE

Oenococcus oeni is the predominant lactic acid bacteria species in wine and cider, where it performs the malolactic fermentation (MLF) (Lonvaud-Funel, 1999). The O. oeni strains analyzed to date form four major genetic lineages named phylogroups A, B, C and D (Lorentzen et al., 2019). Most of the strains isolated from wine, cider, or kombucha belong to phylogroups A, B+C, and D, respectively, although B and C strains were also detected in wine (Campbell-Sills et al., 2015; Coton et al., 2017; Lorentzen et al., 2019;

Wine labelling with the list of ingredients: context, consumer’s perception and future challenges

In this video recording of the IVES science meeting 2024, Stéphane La Guerche (Œnoppia, Paris, France) speaks about wine labelling with the list of ingredients: context, consumer’s perception and future challenges. This presentation is based on an original article accessible for free on IVES Technical Reviews.

Classification of “Valpolicella Superiore” wines in relation to aromatic composition: influence of geographical origin, vintage and aging

The Valpolicella appellation, mainly known for Amarone and Ripasso, is experiencing growing interest in Valpolicella Superiore (VS), a lighter red wine aligning with consumer demand. However, anecdotal evidence suggests different stylistic interpretations of VS, potentially causing consumer confusion.

POTENTIAL DEACIDIFYING ROLE OF A COMMERCIAL CHITOSAN: IMPACT ON PH, TITRATABLE ACIDITY, AND ORGANIC ACIDS IN MODEL SOLUTIONS AND WHITE WINE

Chitin is the main structural component of a large number of organisms (i.e., mollusks, insects, crustaceans, fungi, algae), and marine invertebrates including crabs and shrimps. The main derivative of chitin is chitosan (CH), produced by N-deacetylation of chitin in alkaline solutions. Over the past decade, the OIV/OENO 338A/ 2009 resolution approved the addition of allergen-free fungoid CH to must and wine as an adjuvant for microbiological control, prevention of haziness, metals chelation and ochratoxins removal (European Commission. 2011). Despite several studies on application of CH in winemaking, there are still very limited and controversial data on its interaction with acidic components in wine (Colan-gelo et al., 2018; Castro Marin et al., 2021).

How different SO2 doses impact amino acid and volatile profile of white wines

Sulphur dioxide (SO2) is a well-established preservative in the wine industry. Its ability to act in different stages of the process as an antioxidant and an antiseptic as main characteristics makes it versatile. However, the need for its reduction or even its replacement has been increasing by the regulatory authorities as well as by the final consumer. To understand the impact of SO2 during ageing on volatile organic compounds (VOCs) and amino acids (AAs) profiles, two white wines (one varietal and one blend) were aged under the same conditions, in the presence of different doses of SO2. After fermentation (t=0), 0, 30, 60, 90 and 120 mg/L of SO2 were applied, wines were kept over lees for 3 months (t=3), then were bottled after 3 (t=6) and 9 (t=12) months.