Terroir 2008 banner
IVES 9 IVES Conference Series 9 Influence of organic plant treatment on the terroir of microorganisms

Influence of organic plant treatment on the terroir of microorganisms

Abstract

Several factors like vineyard site, climate, grape variety, ripeness, physical health of the grapes and pest management influence the populations of indigenous yeasts on grapes and later on in spontaneous fermentations. During spontaneous fermentations, so called “wild yeasts” could significantly influence the wine aroma. Some authors certify more complexity and an increase of wine quality to these fermentations. A widespread opinion is that spontaneous fermentation can help to emphasize the characteristics of a specific geographical area or even of one vineyard site.
This was checked in a three years experimental period testing different pest management strategies to replace or reduce copper and sulphur and comparing integrated, organic and biodynamic strategies. Alternatives to copper or sulphur treatments could however have an impact on the aroma profiles, as they alter the composition of natural yeast populations in the vineyard or lead to changes in yeast metabolism. This was tested with several alternative strategies compared to organic-standard and integrated variants. Effects on spontaneous flora, fermentation course and aroma profiles were analysed.
Yeast populations on grapes and at different stages of grape and must processing were isolated and determined using RFLP analysis of the ITS-region.
Hanseniaspora uvarum and Metschnikowia pulcherrima were the dominating species on the grapes in all variants. There was no correlation between the population dynamics of yeast during the processing and fermentation and the different pest management strategies.
In this survey the processing and the ecosystem winery seem to have a more important influence on yeast diversity than the microflora composition on grapes.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

STÖLBEN T (1,2), RÜCK C (1,2), HERRBRUCK T (1,2), KAUER R (1), VON WALLBRUNN C (2)

(1) Fachbereich Geisenheim, Fachhochschule Wiesbaden, Von-Lade-Str. 1, 65366 Geisenheim
(2) Fachgebiet Mikrobiologie u. Biochemie, Forschungsanstalt Geisenheim, Von-Lade-Str. 1, 65366 Geisenheim

Contact the author

Keywords

 yeast, spontaneous fermentation, organic pest management, RFLP, sensory analysis

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Red wine astringency: evolution of tribological parameters during different harvest dates

Astringency is a specific oral sensation dominated by dryness and puckering feeling and is one of the leading quality factors for red wines, as well as some fruit products

Varietal volatile patterns of Italian white wines

Aroma diversity is one of the most important features in the expression of the varietal and geographic identity and sensory uniqueness of a wine. Italy has one of the largest ampelographic heritages of the world, with more than five hundred different varieties. Among them, many are used for the production of dry still white wines, many classified as Protected Designation of Origins and therefore produced in specific geographical areas with well-defined grape varieties. Chemical and sensory characteristics of the aroma of these wines have never been systematically studied, and the relative diversity has never been described and classified.

Genetic traceability of the varietal origin of wines: a robust application for must and wines during alcoholic fermentation

Industry and regulatory agencies have developed regulations to ensure authenticity and compliance with wine composition limits. However, this can be truncated by the absence of simple and robust analytical methodologies, uninfluenced by the environment, different oenological techniques and cultural practices. Genetic fingerprinting is the most powerful tool for unequivocal varietal identification; it is not affected by the environment or agronomic practices; however, its usefulness in musts and wines has been controversial and there is currently no routine certification of varietal origin based on DNA analysis.

Deconstructing the soil component of terroir: from controversy to consensus

Wine terroir describes the collectively recognized relation between a geographical area and the distinctive organoleptic characteristics of the wines produced in it. The overriding objective in terroir studies is therefore to provide scientific proof relating the properties of terroir components to wine quality and typicity. In scientific circles, the role of climate (macro-, meso- and micro-) on grape and wine characteristics is well documented and accepted as the most critical. Moreover, there has been increasing interest in recent years about new elements with possible importance in shaping wine terroir like berry/leaf/soil microbiology or even aromatic plants in proximity to the vineyard conferring flavors to the grapes. However, the actual effect of these factors is also dependent on complex interactions with plant material (variety/clone, rootstock, vine age) and with human factors.
The contribution of soil, although a fundamental component of terroir and extremely popular among wine enthusiasts, remains a much-debated issue among researchers. The role of geology is probably the one mostly associated by consumers with the notion of terroir with different parent rocks considered to give birth to different wine styles. However, the relationship between wine properties and the underlying parent material raises a lot of controversy especially regarding the actual existence of rock-derived flavors in the wine (e.g. minerality). As far as the actual soil properties are concerned, the effect of soil physical properties is generally regarded as the most significant (e.g sandy soils being associated with lighter wines while those on clay with colored and tannic ones) mostly through control of water availability which ultimately modifies berry ripening conditions either directly by triggering biosynthetic pathways, or indirectly by altering vigor and yield components. The role of soil chemistry seems to be weakly associated to wine sensory characteristic, although N, K, S and Ca, but also soil pH, are often considered important in the overall soil effect.
Recently, in the light of evidence provided by precision agriculture studies reporting a high variability of vineyard soils, the spatial scale should also be taken into consideration in the evaluation of the soil effects on wines. While it is accepted that soil effects become more significant than climate on a local level, it is not clear whether these micro-variations of vineyard soils are determining in the terroir effect. Moreover, as terroir is not a set of only natural factors, the magnitude of the contribution of human-related factors (irrigation, fertilization, soil management) to the soil effect still remains ambiguous. Lastly, a major shortcoming of the majority of works about soil effects on wine characteristics is the absence of connection with actual vine physiological processes since all soil effects on grape and wine chemistry and sensorial properties are ultimately mediated through vine responses.
This article attempts to breakdown the main soil attributes involved in the terroir effect to suggest an improved understanding about soil’s true contribution to wine sensory characteristics. It is proposed that soil parameters per se are not as significant determining factors in the terroir effect but rather their mutual interactions as well as with other natural and human factors included in the terroir concept. Consequently, similarly to bioclimatic indices, composite soil indices (i.e. soil depth, water holding capacity, fertility, temperature etc), incorporating multiple soil parameters, might provide a more accurate and quantifiable means to assess the relative weight of the soil component in the terroir effect.

Application of remote and proximal sensors for precision vineyard management in Valpolicella

The integration of sensor systems in viticulture is significantly improving vineyard management by enabling faster, comprehensive crop data collection across the entire vineyard, supporting more informed viticultural decision-making, and as a result promoting sustainability.