Terroir 2008 banner
IVES 9 IVES Conference Series 9 Influence of organic plant treatment on the terroir of microorganisms

Influence of organic plant treatment on the terroir of microorganisms

Abstract

Several factors like vineyard site, climate, grape variety, ripeness, physical health of the grapes and pest management influence the populations of indigenous yeasts on grapes and later on in spontaneous fermentations. During spontaneous fermentations, so called “wild yeasts” could significantly influence the wine aroma. Some authors certify more complexity and an increase of wine quality to these fermentations. A widespread opinion is that spontaneous fermentation can help to emphasize the characteristics of a specific geographical area or even of one vineyard site.
This was checked in a three years experimental period testing different pest management strategies to replace or reduce copper and sulphur and comparing integrated, organic and biodynamic strategies. Alternatives to copper or sulphur treatments could however have an impact on the aroma profiles, as they alter the composition of natural yeast populations in the vineyard or lead to changes in yeast metabolism. This was tested with several alternative strategies compared to organic-standard and integrated variants. Effects on spontaneous flora, fermentation course and aroma profiles were analysed.
Yeast populations on grapes and at different stages of grape and must processing were isolated and determined using RFLP analysis of the ITS-region.
Hanseniaspora uvarum and Metschnikowia pulcherrima were the dominating species on the grapes in all variants. There was no correlation between the population dynamics of yeast during the processing and fermentation and the different pest management strategies.
In this survey the processing and the ecosystem winery seem to have a more important influence on yeast diversity than the microflora composition on grapes.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

STÖLBEN T (1,2), RÜCK C (1,2), HERRBRUCK T (1,2), KAUER R (1), VON WALLBRUNN C (2)

(1) Fachbereich Geisenheim, Fachhochschule Wiesbaden, Von-Lade-Str. 1, 65366 Geisenheim
(2) Fachgebiet Mikrobiologie u. Biochemie, Forschungsanstalt Geisenheim, Von-Lade-Str. 1, 65366 Geisenheim

Contact the author

Keywords

 yeast, spontaneous fermentation, organic pest management, RFLP, sensory analysis

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Spatial variability of temperature is linked to grape composition variability in the Saint-Emilion winegrowing area

Elevated temperature during the grape maturation period is a major threat for grape quality and thus wine quality. Therefore, characterizing the grape composition response to temperature at a larger scale would represent a crucial step towards adaptation to climate change. In response to changes in temperature, various physiological mechanisms regulate grape composition. Primary and secondary metabolisms are both involved in this response, with well-known effects, for example on anthocyanins, and lesser known effects, for example on aromas or aroma precursors. At the field scale or at the regional scale, however, numerous environmental or plant-specific factors intervene to make the effects of temperature difficult to distinguish from overall variability. In this study, it was attempted to overcome this difficulty by selecting well-characterized situations with differing temperatures.
A long-term study of air temperature variability across several Merlot vineyards in the Saint-Emilion and Pomerol wine producing area found significant temperature differences and gradients at various time scales linked to environmental factors. From this study area, a few sites were selected with similar age, soil and training system conditions, and with repeated and contrasted temperature differences during the maturation period. The average temperature difference during the maturation period was about 2°C between cooler and warmer sites, a difference similar to that expected under future climate change scenarios. In close vicinity to the temperature sensors at each site, grape berries were sampled at different times until full maturity during 2019 and 2020. Also, berries from bunches on either side of the row were analyzed separately, allowing an investigation of bunch exposure effect associated with the coupling of berry temperature and solar radiation. Four replicates of pooled berries for each time – site – bunch exposure combination were obtained and analyzed for biochemical composition. Analyses of variance of the biochemical composition data collected at different sampling times reveal significant effects associated with temperature, site, and bunch azimuth. For instance, anthocyanins in grape skins are clearly influenced by temperature and solar radiation exposure, with up to 30% reduction in warmer conditions.

Cover crops in viticulture

In this audio recording of the IVES science meeting 2022, Gonzaga Santesteban (Department of Agronomy, Biotechnology and Food Science, Public University of Navarra (UPNA), Pamplona, Navarra, Spain) speaks about cover crops in viticulture. This presentation is based on 2 original articles accessible for free on OENO One.

Impact of urbanization on optimum wine Terroirs in the Bordeaux region sample of one township of the Entre-Deux-Mers Area

L’étude présentée porte sur une commune de l’Entre-Deux-Mers dans le bordelais. Nous caractérisons dans un premier temps les potentialités des sols vis-à-vis de la production de vins rouges de qualité (délimitation de terroirs grâce à la prise en compte des couvertures pédologiques et des caractéristiques morphométriques du terrain : pentes, expositions, convexités. Dans un second temps, nous récapitulons l’évolution historique des occupations des sols depuis 1790 : l’emplacement des vignes est ainsi localisé sur les terroirs respectifs des communes. Enfin, une étude prospective résultant d’enquêtes sur l’utilisation du foncier, situe le devenir prévisible de l’espace étudié (en particulier dans ses composantes viticoles et urbaines).

CONSUMER PERCEPTION OF INTERSPECIFIC HYBRID RED WINE COLOR IN RELATION TO ANTHOCYANIN PROFILE AND CHEMICAL COLOR PARAMETERS

Interspecific hybrid winegrapes are of growing interest in the context of climate change based on their disease resistance and cold hardiness. In addition to a need for increased understanding of their chemical composition, there is little empirical evidence on the consumer perception of non-vinifera wine. Phenolic compounds, and particularly color, play an important organoleptic and quality determination role in wine, but can vary significantly in interspecific hybrid wines compared to wines produced from Vitis vinifera cultivars [1, 2, 3]. Anecdotally, the variation in anthocyanin species, interactions, and concentrations in interspecific hybrids could result in a variance from“vinifera-like” wine color.

Toasting and grain effect on Tempranillo red wine aged in Quercus petraea barrels

The barrel-making process is widely recognized as a crucial practice that affects the composition of barrel-aged wine. After the drying process, the staves are considered ready for barrel assembly, which includes the processes of bending and toasting the barrel structure. Toasting is considered one of the most critical stages in determining the physical and chemical composition of the staves, which can influence the chemical and sensory composition of the wine aged in barrels made from them [1].