Terroir 2008 banner
IVES 9 IVES Conference Series 9 Narrow terraces and alternative training systems for steep sloop viticulture – Douro region

Narrow terraces and alternative training systems for steep sloop viticulture – Douro region

Abstract

In Douro Region, vineyards are usually planted on hillsides with steep sloops. The models currently used for planting those vineyards are, depending on the initial slope of the hillside, vertical planting or terraces. Vertical planting is well adapted when the slope of the hillside is lower than 35-40% and terraces, supported by earthen embankment and one or two rows of vines are the solution for slopes higher than 35 – 40%. Terraces with two planting rows, 3.6 to 4.0m-wide were planted during the 1980s in more than 2500 ha. This solution proved to have disadvantages as to compel the maintenance of the embankment with chemicals for weeds control, high embankment height and consequent problems of instability and erosion.
Due to that in this work it is presented one correct way of constructing narrow terraces 2.5 m wide, using laser systems, and alternatives in control of weeds both in platform and in slope. Because narrow terraces have the disadvantage of a low planting density and yield potential, an experiment was performed with the variety “Touriga Franca”, representative of about 20% of vines in the region, grafted in 110R, two training systems and two planting row distances.
The results of the trial, performed in 2006 and 2007, showed that yield in the double cordon system (LYS 2/3) was respectively 62% and 52% higher than in the traditional vertical shoot positioning (VSP) without negative quality effect on quality of the grapes. Concerning planting row distance, 0.80m achieved a higher yield and better quality than planting at 1.20m.
Narrow terraces, constructed with rigor, proved to be an excellent alternative in planting hillside vineyards, 0.80m a better planting distance than 1.20m, both in terms of yield and on quality and double cordon LYS 2/3 a system suitable to improve yield, without quality detriment, as verified in these two years trials.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Jorge QUEIROZ (1); Mário CUNHA (1); António MAGALHÃES (2); David GUIMARAENS (2); Mário SOUSA (3) and Rogério CASTRO (4)

(1) Faculdade de Ciências, Universidade do Porto – Secção Autónoma de Engenharia das Ciências Agrárias, Rua Padre Armando Quintas, 4485-661 Vairão
(2) The Fladgate Partnership Vinhos, S. A., R. Barão de Forrester, 404, 4400 V.N. Gaia
(3) Direcção Regional de Agricultura Trás-os-Montes e Alto Douro, Centro de Estudos Vitivinícolas do Douro – Quinta do Paço, 5050-071 Peso da Régua
(4) Instituto Superior de Agronomia – Universidade Técnica de Lisboa -Tapada da Ajuda, 1399 Lisboa Codex

Contact the author

Keywords

Douro, narrow terraces, training system, steep slope viticulture (SSV)

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Haplotype-Resolved genome assembly of the Microvine

Developing a tractable genetic engineering and gene editing system is an essential tool for grapevine. We initiated a plant transformation and biotechnology program at Oregon State University using the grape microvine system (V. vinifera) in 2018 to interrogate gene-to-trait relationships using traditional genetic engineering and gene editing. The microvine model is also used for nanomaterial-assisted RNP, DNA, and RNA delivery. Most reference genomes and annotations for grapevine are collapsed assemblies of homologous chromosomes and do not represent the specific microvine cultivar ‘043023V004’ under study at our institution.

Combination of NIR multispectral information acquired from a ground moving vehicle with AI methods to assess the vine water status in a Tempranillo (Vitis vinifera L.) commercial vineyard

Increasing water scarcity and unpredictable rainfall patterns necessitate efficient water management in grape production. This study proposes a novel approach for monitoring grapevine water status in a commercial vertically-shoot-positioned Vitis vinifera L. Tempranillo vineyard using non-invasive spectroscopy with a battery of different AI methods to assess vineyard water status, that could drive precise irrigation. A contactless, miniature NIR spectrometer (900-1900 nm) mounted on a moving vehicle (3 Km/h) was employed to collect spectral data from the vines’ northeast side along six dates in season 2021.

Evolution of flavonols during Merlot winemaking processes

The phenomenon of quercetin precipitation in wine (flanovol haze), has been manifested for many years in several wine-producing regions

Root development and the performance of grapevines in response to natural as well as man‐made soil impediments

The majority of soils used for wine and table grape production in South Africa are notoriously shallow, i.e. they are restricting root penetration.

Implementation of hyperspectral image analysis for evaluating table grape quality on bunch and berry level

Typically, subjective, and visual methods are used by grape growers to assess harvest maturity. These methods may not accurately represent the maturity of an entire vineyard – especially if extensive and representative sampling was not used. New technologies have been investigated for improved harvest management decisions. Spectroscopy methods utilizing the near-infrared region of the light spectrum is one such technology investigated as an alternative to classic methods and particularly the application of hyperspectral imaging (HSI) has recently gained attention in research. HIS is a spectroscopic technique that obtains hundreds of images at different wavelengths collecting spectral data for each pixel in the sample i.e., providing both spectral and spatial data.