Terroir 2008 banner
IVES 9 IVES Conference Series 9 Narrow terraces and alternative training systems for steep sloop viticulture – Douro region

Narrow terraces and alternative training systems for steep sloop viticulture – Douro region

Abstract

In Douro Region, vineyards are usually planted on hillsides with steep sloops. The models currently used for planting those vineyards are, depending on the initial slope of the hillside, vertical planting or terraces. Vertical planting is well adapted when the slope of the hillside is lower than 35-40% and terraces, supported by earthen embankment and one or two rows of vines are the solution for slopes higher than 35 – 40%. Terraces with two planting rows, 3.6 to 4.0m-wide were planted during the 1980s in more than 2500 ha. This solution proved to have disadvantages as to compel the maintenance of the embankment with chemicals for weeds control, high embankment height and consequent problems of instability and erosion.
Due to that in this work it is presented one correct way of constructing narrow terraces 2.5 m wide, using laser systems, and alternatives in control of weeds both in platform and in slope. Because narrow terraces have the disadvantage of a low planting density and yield potential, an experiment was performed with the variety “Touriga Franca”, representative of about 20% of vines in the region, grafted in 110R, two training systems and two planting row distances.
The results of the trial, performed in 2006 and 2007, showed that yield in the double cordon system (LYS 2/3) was respectively 62% and 52% higher than in the traditional vertical shoot positioning (VSP) without negative quality effect on quality of the grapes. Concerning planting row distance, 0.80m achieved a higher yield and better quality than planting at 1.20m.
Narrow terraces, constructed with rigor, proved to be an excellent alternative in planting hillside vineyards, 0.80m a better planting distance than 1.20m, both in terms of yield and on quality and double cordon LYS 2/3 a system suitable to improve yield, without quality detriment, as verified in these two years trials.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Jorge QUEIROZ (1); Mário CUNHA (1); António MAGALHÃES (2); David GUIMARAENS (2); Mário SOUSA (3) and Rogério CASTRO (4)

(1) Faculdade de Ciências, Universidade do Porto – Secção Autónoma de Engenharia das Ciências Agrárias, Rua Padre Armando Quintas, 4485-661 Vairão
(2) The Fladgate Partnership Vinhos, S. A., R. Barão de Forrester, 404, 4400 V.N. Gaia
(3) Direcção Regional de Agricultura Trás-os-Montes e Alto Douro, Centro de Estudos Vitivinícolas do Douro – Quinta do Paço, 5050-071 Peso da Régua
(4) Instituto Superior de Agronomia – Universidade Técnica de Lisboa -Tapada da Ajuda, 1399 Lisboa Codex

Contact the author

Keywords

Douro, narrow terraces, training system, steep slope viticulture (SSV)

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Response of Shiraz/101‐14 mgt to in‐row vine spacing

Knowledge of vine reaction to plant spacing under high potential soil conditions is restricted. This study was done to determine effects of vine spacing

Characterizing chemical influences of smoke on wine via novel application of 13c-labelled smoke

Smoke impact is an ongoing and growing issue for vintners across the globe, with the west coast of the U.S. and Australia being two of the largest wine industries impacted. Wine has shown to be especially sensitive to smoke exposure, often acquiring off-flavor sensory characteristics, such as “burnt rubber”, “ashy”, or other medicinal off-flavors.1 While several studies have examined the chemical composition of smoke influences on wine, some studies disagree on what compounds are having the largest impact on smell and flavor.2 This study is designed as a bottom-up approach to inventory the chemical compounds derived from smoke from a grassland-like fire that are potentially influencing wine chemical composition.

HOLISTIC APPROXIMATION OF THE INFLUENCE OF SACCHAROMYCES STRAINS ON WINE AROMA PRECURSORS

Wine varietal aroma is the result of a mixture of compounds formed or liberated from specific grape-aroma precursors. Their liberation/formation from their specific precursors can occur spontaneously by acid catalyzed rearrangements or hydrolysis or by the action of the yeast enzymatic activities. The influence of yeast during fermentation on the production of these volatile compounds has been widely studied however, the effect of this influence during aging is not fully understood. In order to evaluate these processes several indirect strategies have been used to study aroma precursors although they are not useful to understand the chemistry of the process.

Possible methods of adaptation to the effects of climate change in the Tokaj Wine Region 

Viticulture’s adaptation to the harmful effects of climate change is globally the biggest challenge of the near future. Short, extremely intensive rainfalls and longer periods of drought are getting more frequent in the Tokaj Wine Region, where the majority of the vineyards are cultivated on steep slopes. Hence, erosion has high risk, especially when combined with the loess-based soils on about ten percent of the region. The environmentally beneficial cover crop and mulch usage can effectively reduce the risk of erosion, according to research done by the Tokaj Wine Region Research Institute of Viticulture and Oenology.

PREVALENCE OF OAK-RELATED AROMA COMPOUNDS IN PREMIUM WINES

Barrel fermentation and barrel-ageing of wine are commonly utilised practices in premium wine production. The wine aroma compounds related to barrel contact are varied and can enhance a range of wine aromas and flavours, such as ‘struck flint’, ‘caramel’, ‘red berry’, ‘toasty’ and ‘nutty’, as well as conventional oaky characters such as ‘vanilla’, ‘spice’, ‘smoky’ and ‘coconut’. A survey of commercially produced premium Shiraz, Cabernet Sauvignon, Pinot Noir and Chardonnay wines was conducted, assessing the prevalence of compounds that have been proposed as barrel-ageing markers¹ including oak lactones, volatile phenols, furanones, aldehydes, thiazoles2,3, phenylmethanethiol⁴ and 2-furylmethanethiol.⁵