Terroir 2008 banner
IVES 9 IVES Conference Series 9 Narrow terraces and alternative training systems for steep sloop viticulture – Douro region

Narrow terraces and alternative training systems for steep sloop viticulture – Douro region

Abstract

In Douro Region, vineyards are usually planted on hillsides with steep sloops. The models currently used for planting those vineyards are, depending on the initial slope of the hillside, vertical planting or terraces. Vertical planting is well adapted when the slope of the hillside is lower than 35-40% and terraces, supported by earthen embankment and one or two rows of vines are the solution for slopes higher than 35 – 40%. Terraces with two planting rows, 3.6 to 4.0m-wide were planted during the 1980s in more than 2500 ha. This solution proved to have disadvantages as to compel the maintenance of the embankment with chemicals for weeds control, high embankment height and consequent problems of instability and erosion.
Due to that in this work it is presented one correct way of constructing narrow terraces 2.5 m wide, using laser systems, and alternatives in control of weeds both in platform and in slope. Because narrow terraces have the disadvantage of a low planting density and yield potential, an experiment was performed with the variety “Touriga Franca”, representative of about 20% of vines in the region, grafted in 110R, two training systems and two planting row distances.
The results of the trial, performed in 2006 and 2007, showed that yield in the double cordon system (LYS 2/3) was respectively 62% and 52% higher than in the traditional vertical shoot positioning (VSP) without negative quality effect on quality of the grapes. Concerning planting row distance, 0.80m achieved a higher yield and better quality than planting at 1.20m.
Narrow terraces, constructed with rigor, proved to be an excellent alternative in planting hillside vineyards, 0.80m a better planting distance than 1.20m, both in terms of yield and on quality and double cordon LYS 2/3 a system suitable to improve yield, without quality detriment, as verified in these two years trials.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Jorge QUEIROZ (1); Mário CUNHA (1); António MAGALHÃES (2); David GUIMARAENS (2); Mário SOUSA (3) and Rogério CASTRO (4)

(1) Faculdade de Ciências, Universidade do Porto – Secção Autónoma de Engenharia das Ciências Agrárias, Rua Padre Armando Quintas, 4485-661 Vairão
(2) The Fladgate Partnership Vinhos, S. A., R. Barão de Forrester, 404, 4400 V.N. Gaia
(3) Direcção Regional de Agricultura Trás-os-Montes e Alto Douro, Centro de Estudos Vitivinícolas do Douro – Quinta do Paço, 5050-071 Peso da Régua
(4) Instituto Superior de Agronomia – Universidade Técnica de Lisboa -Tapada da Ajuda, 1399 Lisboa Codex

Contact the author

Keywords

Douro, narrow terraces, training system, steep slope viticulture (SSV)

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Effects of winemaking practices on Pinot blanc quality

Two winemaking processes for Pinot blanc were investigated following the chemical and sensory profiles for 12 months, aiming at: i) determining the chemical and sensory profiles

Unprecedented rainfall in northern Portugal

Aim: Climate is arguably one of the most important factors determining the quality of wine from any given grapevine variety. High rainfall during spring can promote growth of the vines but increases the risk of fungal disease, while vineyard operations can be disrupted, as machinery may be prevented from getting in the vineyard owing to muddy soils.

Impact of winemaking practises on the formation of pinking

The pinking is a phenomenon that can occur in white wine produced with white grape causing the color change from yellow to red-salmon hue. Even if its appearance is highly variable and dependent to the vintage, the wines from certain grape varieties, such as Sauvignon blanc, Chardonnay, Riesling and Trebbiano di Lugana, have been identified to be more susceptible to the pinking.

Mechanization of pre-flowering leaf removal under the temperate-climate conditions of Switzerland

Grapevine leaf removal (LR) in the cluster area is typically done between fruit set and cluster closure to create an unfavorable microclimate for fungal diseases, such as Botrytis cinerea and powdery mildew. Grape growers are now turning their attention to pre-flowering LR, which has additional benefits under certain conditions. When applied before flowering, LR strongly affects fruit set and thus the number of berries per cluster. It is therefore a good yield control tool, replacing time-consuming manual cluster thinning (Poni et al. 2006). It also improves berry structure, that is, skin thickness, skin-to-pulp ratio, and berry composition (total soluble solids, titratable acidity, and polyphenols) (Palliotti et al. 2012; Komm and Moyer 2015). By exacerbating competition for assimilates between reproductive and vegetative organs, pre-flowering LR also poses some risks. Excessive yield loss at the same year’s harvest due to a too low fruit set rate is the main concern: intensive pre-flowering LR (100% of the cluster area) can induce up to 50% yield loss in potted vines (Poni et al. 2005). Other parameters, such as cool climatic conditions during flowering, also affect fruit set rate and make it difficult to predict potential yield at harvest. Repeated and overly intensive preflowering LR can have repercussions over time and induce a decline in bud fruiting and plant vigor (Risco et al. 2014).

Le réseau français des partenaires de la sélection vigne : un dispositif unique au monde au service de la sauvegarde du patrimoine variétal

The French vine selection partners network is currently made up of 40 regional partners, grouped around IFV (French Institute for Vine and Wine) and INRAE (national research institute for agriculture and environment), whose missions are preservation, selection, and innovation of our varietal diversity. The originality of this device is based on a 3-level organisation: – varietal diversity preservation, with the world reference: the INRAE’s vine genetics resources centre of Vassal-Montpellier (Marseillan, France), the world’s largest ampelographic collection, which includes nearly 6 000 accessions of cultivated Vitis vinifera from 54 countries, as well as rootstocks, interspecific hybrids, wild vines (lambrusques) and wild American and Asian species.