Terroir 2008 banner
IVES 9 IVES Conference Series 9 Ripening of Vitis vinifera grapes varieties in São Joaquim, a new wine growing region, Southern Brazil

Ripening of Vitis vinifera grapes varieties in São Joaquim, a new wine growing region, Southern Brazil

Abstract

This report has investigated the ripening characteristics of Vitis vinifera grapes Cabernet Franc, Merlot, Sangiovese and Syrah in two consecutive vintages (2006 and 2007), in order to evaluate the adaptation from these recently varieties planted in São Joaquim town, Santa Catarina State, Brazil. The berries had been collected at 10-day intervals from véraison to harvest and in have been analyzed at levels of pH, total acidity (TA), total soluble solids (TSS), maturation index (TSS/TA), total monomeric anthocyanins (TMA) (malvidin-3-glucoside, mg/100g skin), total polyphenols index (TPI), and Color Intensity (CI). At maturity, values of pH, TA and TSS ranged from 3.3 to 3.5; from 0.60 to 0.80 (mg of tartaric acid/100 mL) and from 19 to 23.5 ºBrix, respectively. Maturation index ranged from 29 to 40, and significant differences (p< 0.05) have been observed among different grapes varieties, but not between vintages. The values of TMA, TPI and CI ranged from 864.6 to 352.1; from 126.1 to 45.5 and from 20.66, respectively, and significant differences have been verified among varieties and also vintages (p< 0.05).

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type: Article

Authors

Eliana FORTES GRIS (1), Vívian Maria BURIN (1), Leila D. FALCÃO (2), Emílio BRIGHENTI (3), Marilde T. BORDIGNON LUIZ (1)

(1) Universidade Federal de Santa Catarina/Centro de Ciências Agrárias/Departamento de Ciência e Tecnologia de Alimentos
(2) Universidade Estadual de Ponta Grossa – PRODOC-CAPES
(3) Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina – Estação Experimental de São Joaquim

Contact the author

Keywords

Vitis vinifera grapes, adaptation, ripening

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Effects of graft quality on growth and grapevine-water relations

Climate change is challenging viticulture worldwide compromising its sustainability due to warmer temperatures and the increased frequency of extreme events. Grafting Vitis vinifera L.

Guyot or pergola for dehydration of Rondinella grape

Pergola veronese is the most important vine training system in Valpolicella area but Guyot in the last decades is diffusing. Rondinella is one of the three most important varieties

Elucidating vineyard site contributions to key sensory molecules: Identification of correlations between elemental composition and volatile aroma profile of site-specific Pinot noir wines

The reproducibility of elemental profile in wines produced across multiple vintages has been previously reported using grapes from a single scion clone of Vitis vinifera L. cv. Pinot noir. The grapevines were grown on fourteen different vineyard sites, from Oregon to southern California in the U.S.A., which span distances from approximately hundreds of meters to 1450 km, while elevations range from near sea level to nearly 500 m. In addition, sensorial (i.e. aroma, taste, and mouthfeel) and chemical (i.e. polyphenolic and volatile) differences across the different vineyard sites have also been observed among these wines at two aging time points. While strong evidence exists to support that grapes grown in different regions can produce wines with unique chemical and sensorial profiles, even when a single clone is used, the understanding of growing site characteristics that result in this reproducible differentiation continues to emerge. One hypothesis is that the elemental profile that a vineyard site imparts to the grape berries and the resulting wine is an important contributor to this differentiation in chemistry and sensory of wines. For example, various classes of enzymes that catalyze the formation of key aroma compounds or their precursors require specific metals. In this work, we begin to report correlations between elemental and volatile aroma profiles of site-specific Pinot noir wines, made under standardized winemaking conditions, that have been previously shown to be distinguished separately by these chemical analyses.

Zoning of viticulture in Yugoslavia

The last official zoning of Viticulture in Yugoslavia was performed 1978. year, when (according to recommendation of OIV and European Economic Community), regions, sub regions and vineyards districts were established supposing that the varieties which will be exhibit ail the positive agro biological and technological characteristics.

Differences in the chemical composition and “fruity” aromas of Auxerrois sparkling wines from the use of cane and beet sugar during wine production.

The main objective of this study was to establish if beet sugar produces a different concentration of “fruity” volatile aroma compounds (VOCs), compared to cane sugar when used for second alcoholic fermentation of Auxerrois sparkling wines. Auxerrois base wine from the 2020 vintage was separated into two lots; half was fermented with cane sugar and half with beet sugar (both sucrose products and tested for sugar purity). These sugars were used in yeast acclimation (IOC 2007), and base wines for the second fermentation (12 bottles each). Base wines were manually bottled at the Cool Climate Oenology and Viticulture Institute (CCOVI) research winery. The standard chemical analysis took place at intervals of 0, 4 weeks, and 8 weeks post-bottling. Acidity and pH measurements were carried out by an auto-titrator. Residual Sugar (g/L) (glucose (g/L), fructose (g/L)), YAN (mg N/L), malic acid, and acetic acid (g/L) were analyzed by Megazyme assay kits. parameters were analyzed by Megazyme assay kits. Alcohol (% v/v) was assessed by GC-FID. VOC analysis of base wines, finished sparkling wines, as well as the two sugars in model sparkling wine solutions, was carried out by GC-MS. VOCs included ethyl octanoate, ethyl hexanoate, ethyl butanoate, ethyl decanoate, ethyl-2-methylbutyrate, ethyl-3-methylbutyrate, ethyl 2-methyl propanoate, ethyl 2- hydroxy propanoate, 1-hexanol, 2-phenylethan-1-ol, ethyl acetate, hexyl acetate, isoamyl acetate and 2-phenylethyl acetate.