Terroir 2008 banner
IVES 9 IVES Conference Series 9 Ripening of Vitis vinifera grapes varieties in São Joaquim, a new wine growing region, Southern Brazil

Ripening of Vitis vinifera grapes varieties in São Joaquim, a new wine growing region, Southern Brazil

Abstract

This report has investigated the ripening characteristics of Vitis vinifera grapes Cabernet Franc, Merlot, Sangiovese and Syrah in two consecutive vintages (2006 and 2007), in order to evaluate the adaptation from these recently varieties planted in São Joaquim town, Santa Catarina State, Brazil. The berries had been collected at 10-day intervals from véraison to harvest and in have been analyzed at levels of pH, total acidity (TA), total soluble solids (TSS), maturation index (TSS/TA), total monomeric anthocyanins (TMA) (malvidin-3-glucoside, mg/100g skin), total polyphenols index (TPI), and Color Intensity (CI). At maturity, values of pH, TA and TSS ranged from 3.3 to 3.5; from 0.60 to 0.80 (mg of tartaric acid/100 mL) and from 19 to 23.5 ºBrix, respectively. Maturation index ranged from 29 to 40, and significant differences (p< 0.05) have been observed among different grapes varieties, but not between vintages. The values of TMA, TPI and CI ranged from 864.6 to 352.1; from 126.1 to 45.5 and from 20.66, respectively, and significant differences have been verified among varieties and also vintages (p< 0.05).

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type: Article

Authors

Eliana FORTES GRIS (1), Vívian Maria BURIN (1), Leila D. FALCÃO (2), Emílio BRIGHENTI (3), Marilde T. BORDIGNON LUIZ (1)

(1) Universidade Federal de Santa Catarina/Centro de Ciências Agrárias/Departamento de Ciência e Tecnologia de Alimentos
(2) Universidade Estadual de Ponta Grossa – PRODOC-CAPES
(3) Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina – Estação Experimental de São Joaquim

Contact the author

Keywords

Vitis vinifera grapes, adaptation, ripening

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Diversity in grape composition for sugars and acidity opens options to mitigate the effect of warming during ripening

The marked climate change impact on vine and grape development (phenology, sugar content, acidity …) is one of the manifestations of Genotype X Environment X Management interactions importance in viticulture. Some practices, such as irrigation, can mitigate the effect of water deficit on grape development, but warming is much more difficult to challenge. High temperatures tend to alter the acid balance of the fruit with a parallel increase in sugar concentration. In the long term, genetic improvement to select varieties better coping with temperature elevation appear as a good option to support sustainable viticulture. Nevertheless, the existing phenotypic diversity for grape quality components that are influenced by temperature is poorly understood, which jeopardizes breeding strategies.

Underpinning terroir with data: rethinking the zoning paradigm

Agriculture, natural resource management and the production and sale of products such as wine are increasingly data-driven activities. Thus, the use of remote and proximal crop and soil sensors to aid management decisions is becoming commonplace and ‘Agtech’ is proliferating commercially; mapping, underpinned by geographical information systems and complex methods of spatial analysis, is widely used. Likewise, the chemical and sensory analysis of wines draws on multivariate statistics; the efficient winery intake of grapes, subsequent production of wines and their delivery to markets relies on logistics; whilst the sales and marketing of wines is increasingly driven by artificial intelligence linked to the recorded purchasing behaviour of consumers. In brief, there is data everywhere!

Opinions will vary on whether these developments are a good thing. Those concerned with the ‘mystique’ of wine, or the historical aspects of terroir and its preservation, may find them confronting. In contrast, they offer an opportunity to those interested in the biophysical elements of terroir, and efforts aimed at better understanding how these impact on vineyard performance and the sensory attributes of resultant wines. At the previous Terroir Congress, we demonstrated the potential of analytical methods used at the within-vineyard scale in the development of Precision Viticulture, in contributing to a quantitative understanding of regional terroir. For this conference, we take this approach forward with examples from contrasting locations in both the northern and southern hemispheres. We show how, by focussing on the vineyards within winegrowing regions, as opposed to all of the land within those regions, we might move towards a more robust terroir zoning than one derived from a mixture of history, thematic mapping, heuristics and the whims of marketers. Aside from providing improved understanding by underpinning terroir with data, such methods should also promote improved management of the entire wine value chain.

Proposal of zonification and characterization of terroirs in the Yalde-Najerilla-Uruñuela vine growing area (DOC Rioja, Spain), based on the soil influence

Natural Terroir Units (NTU) are being delimited in vine growing area DOCa Rioja, in collaboration with Uruñuela Cooperative, to characterized specific and singular Tempranillo (Vitis vinifera

Nucleophilic fraction to estimate the antioxidant activity of inactivated yeast derivates

Oxidation in wine is mostly related to the Michael addition of nucleophiles on two quinones formed from the oxidation of ortho-diphenols. In wine this mechanism is responsible for the increase of the yellow hue and aroma loss. Glutathione exerts its antioxidant activity throughout its competitive addition onto quinones, but many other compounds can have the same behavior: sulfanyl
compounds, amino acids, etc. Addition of yeast derivates during the winemaking process can increase the level of those nucleophilic compounds and then confer to the wine a higher resistance

Copper reduction strategy for sangiovese in organic viticulture

Organic viticulture requires copper based treatments for bunch protection even though an intensive employment is no longer admitted because of its low leaching and phytotoxicity in the soil. UE Reg. 1981/2018 set copper employment to 4 kg/ha for year or 28 during 7 years with an absolute level allowed of 6 Kg/ha although those limits were decreased frequently.