Terroir 2008 banner
IVES 9 IVES Conference Series 9 The role of the environmental factor as a component of the terroir in Spain (A.O. Cigales, NW Spain)

The role of the environmental factor as a component of the terroir in Spain (A.O. Cigales, NW Spain)

Abstract

The components and the methodology for characterization of the terroir in Spain have been described by Gómez-Miguel et al. (2003) and Sotés et al. (2003), taking into account the full range of environmental factors (i.e: climate, vegetation, topography, soils, altitude, etc.), landscape variables (derived from photo-interpretation and a digital elevation model) and specific variables of the country’s viticulture (i.e: size and distribution of vineyards, varieties, phenology, productivity, quality, designation regulations, etc.). This paper describes: the integration of the resulting database in a Geographic Information System (GIS) that allows the spatial and statistical analysis of all variables; the parametric system of variable quantification; the selection of main endogenous and exogenous variables for terroir characterization; and the role of the variables that describe the landscape in the final results. The analysis has been carried out over 2.4 million ha. This paper presents the results of a case studied in the Cigales region (A.O. Cigales) that expands on 62,210.5 ha and includes 2,351.5 ha of vineyards. The observed distribution of vineyards in this region is ¿well? correlated to the integrated landscape-terrain classification and productivity but does not depend on the total available area for cultivation. It is significant that a subset of geological formations that accounts for 59 percent of the total area sustains over 95 percent of the vineyards.
The results of the study have general implications for landscape-terrain classification in Spain and define a set of methodological guidelines: a) definition of the set of variables that define the landscape (characterization of the lithological and morphological components; homogenization of lithological units; cartography of the geological formations; integration of a digital elevation model to derive altitude, orientation, exposure and slope. The spatial scale should be at least 1:25,000); b) definition of the Homogeneous Land Units (UHM) (The parameter characterization was carried out from the units which were previously defined from the data of the environmental analysis); c) experimental design (Selection of Homogeneous Land Units and characterization within the units); d) final zoning: integration of the Homogeneous Land Unit with the plant (variety and rootstock) and the product (must and wine).

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

V. GOMEZ-MIGUEL (1) and V. SOTES (2)

Universidad Politécnica de Madrid. Avda Complutense s/n. 28040-Madrid, Spain

Contact the author

Keywords

terroir, zoning, landscape, climate, soil, GIS

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

The characteristics of strong territorial brands: the case of Champagne

While most brands belong to individual enterprises, some brands belong to groups of enterprises based in a single territory. This conceptual paper examines the characteristics

Comparative QTL mapping of phenology traits in three cross populations of grapevine

Long-term studies on grapevine phenology have clearly demonstrated that global warming is affecting phenological events, leading to an anticipation in their timing, and negatively impacting grape yield and berry quality. Therefore, dissecting the genetic determinants involved in the plant regulation of the phenological stages of budburst, flowering, veraison and ripening can improve our knowledge of the underlying mechanisms and support plant breeding programs and the advancement of vineyard management strategies.
We report here the results of a QTL mapping experiment conducted on three segregating populations obtained from the crossing of ‘Cabernet Sauvignon’ and ‘Corvina’, ‘Corvina’ and the hybrid ‘Solaris’ and ‘Rhine Riesling’ and ‘Cabernet Sauvignon’.

Budburst delay and berry ripening after vegetal oil application in Austria

Occurrence of freezing temperatures in early spring when grapevine shoots are developing is termed late frost in viticulture. Young green tissues are very sensible to temperatures below zero and damages often lead to important yield and quality losses such as the case in Europe in 2017. An indirect method to avoid late frost damage in vineyards consist in delaying the budburst. Previous research reported similar effects by applying vegetal oil on dormant buds. Here, we tested the application of rapeseed vegetal oil during late winter to delay the budburst on two V.vinifera cultivars of interest in Austria, Grüner Veltliner (GV) and Zweigelt (ZW).

Stem growth disorder and xylem anatomy modifications during esca pathogenesis in grapevines

Esca is a grapevine vascular disease with detrimental consequences on vineyard yield and longevity. Recently, esca leaf symptom development has been shown to result in the occlusion of xylem vessels by tyloses in leaves and stems, leading to hydraulic failure. However, little is known regarding the response of xylem anatomy and stem growth to esca in different varieties . Here we studied the impact of esca leaf symptom development on grapevine physiology, stem growth, and xylem anatomy in two widespread cultivars, Cabernet sauvignon and Sauvignon blanc.

Variations of soil attributes in vineyards influence their reflectance spectra

Knowledge on the reflectance spectrum of soil is potentially useful since it carries information on soil chemical composition that can be used to the planning of agricultural practices. If compared with analytical methods such as conventional chemical analysis, reflectance measurement provides non-destructive, economic, near real-time data. This paper reports results from reflectance measurements performed by spectroradiometry on soils from two vineyards in south Brazil. The vineyards are close to each other, are on different geological formations, but were subjected to the same management. The objective was to detect spectral differences between the two areas, correlating these differences to variations in their chemical composition, to assess the technique’s potential to predict soil attributes from reflectance data.To that end, soil samples were collected from ten selected vine parcels. Chemical analysis yield data on concentration of twenty-one soil attributes, and spectroradiometry was performed on samples. Chemical differences significant to a 95% confidence level between the two studied areas were found for six soil attributes, and the average reflectance spectra were separated by this same level along most of the observed spectral domain. Correlations between soil reflectance and concentrations of soil attributes were looked for, and for ten soil traits it was possible to define wavelength domains were reflectance and concentrations are correlated to confidence levels from 95% to 99%. Partial Least Squares Regression (PLSR) analyses were performed comparing measured and predicted concentrations, and for fifteen out of 21 soil traits we found Pearson correlation coefficients r > 0.8. These preliminary results, which have to be validated, suggest that variations of concentration in the investigated soil attributes induce differences in reflectance that can be detected by spectroradiometry. Applications of these observations include the assessment of the chemical content of soils by spectroradiometry as a fast, low-cost alternative to chemical analytical methods.