Terroir 2008 banner
IVES 9 IVES Conference Series 9 The role of the environmental factor as a component of the terroir in Spain (A.O. Cigales, NW Spain)

The role of the environmental factor as a component of the terroir in Spain (A.O. Cigales, NW Spain)

Abstract

The components and the methodology for characterization of the terroir in Spain have been described by Gómez-Miguel et al. (2003) and Sotés et al. (2003), taking into account the full range of environmental factors (i.e: climate, vegetation, topography, soils, altitude, etc.), landscape variables (derived from photo-interpretation and a digital elevation model) and specific variables of the country’s viticulture (i.e: size and distribution of vineyards, varieties, phenology, productivity, quality, designation regulations, etc.). This paper describes: the integration of the resulting database in a Geographic Information System (GIS) that allows the spatial and statistical analysis of all variables; the parametric system of variable quantification; the selection of main endogenous and exogenous variables for terroir characterization; and the role of the variables that describe the landscape in the final results. The analysis has been carried out over 2.4 million ha. This paper presents the results of a case studied in the Cigales region (A.O. Cigales) that expands on 62,210.5 ha and includes 2,351.5 ha of vineyards. The observed distribution of vineyards in this region is ¿well? correlated to the integrated landscape-terrain classification and productivity but does not depend on the total available area for cultivation. It is significant that a subset of geological formations that accounts for 59 percent of the total area sustains over 95 percent of the vineyards.
The results of the study have general implications for landscape-terrain classification in Spain and define a set of methodological guidelines: a) definition of the set of variables that define the landscape (characterization of the lithological and morphological components; homogenization of lithological units; cartography of the geological formations; integration of a digital elevation model to derive altitude, orientation, exposure and slope. The spatial scale should be at least 1:25,000); b) definition of the Homogeneous Land Units (UHM) (The parameter characterization was carried out from the units which were previously defined from the data of the environmental analysis); c) experimental design (Selection of Homogeneous Land Units and characterization within the units); d) final zoning: integration of the Homogeneous Land Unit with the plant (variety and rootstock) and the product (must and wine).

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

V. GOMEZ-MIGUEL (1) and V. SOTES (2)

Universidad Politécnica de Madrid. Avda Complutense s/n. 28040-Madrid, Spain

Contact the author

Keywords

terroir, zoning, landscape, climate, soil, GIS

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Monitoring of microbial biomass to characterise vineyard soils

Le sol est un facteur important permettant la croissance de la vigne. Les propriétés physiques et chimiques, mais aussi microbiologiques ont une influence sur beaucoup des fonctions du sol comme la structure, le drainage, la fertilité, déterminant la vigueur des plantes et le potentiel œnologique des raisins.

Viticultural zoning in the province of San Juan, Argentina. Preliminary results, year 2000

La région viticole de San Juan (Argentine) est marquée par des températures très élevées et des variations diurnes faibles. La valorisation de la connaissance de cet environnement et de ses interactions avec le fonctionnement de la vigne et le lien au vin passent par l’étude de ses terroirs et de leur caractérisation. Le point de départ de ce travail est l’étude des zones mésoclimatiques aptes à la culture de la vigne de la Province de San Juan et à la caractérisation des sols de cette même région. L’objectif est de définir le potentiel vitivinicole des zones considérées.

Altered lignans accumulation in a somatic variant of Tempranillo with increased extractability of polyphenols during winemaking

Vegetative propagation of grapevines can generate spontaneous somatic variations, providing a valuable source for cultivar improvement. In this context, natural variation in the composition of phenolic compounds in grapevine berries and seeds stands as a pivotal factor in crafting wines with diverse oenological profiles from the same cultivar. To deepen on the understanding of the physiological and genetic mechanisms driving somatic variation in grape phenolics, here we characterized a somatic variant from Tempranillo Tinto, the clone VN21, that exhibits an intense reduced berry skin cuticle and increased extractability of phenolic compounds during wine fermentation.

Impact of sulfur compounds to the antioxidant stability of white wines

The chemical mechanisms involved in oxidation/reduction potential of wine during winemaking and aging are affecting its color, aroma and taste. Chemical oxidation is one of the major causes of development of off-flavors during ageing1. Thus, the chemical changes in wine during storage should be controlled to ensure the sensory quality of the product and avoid consumer rejection that will compromise the economic value of the product. The 1-hydroxyethyl radical has been recognized as the key radical intermediate in the oxidative reactions in wine2. Based on the kinetic study of POBN-1-hydroxyethyl spin adduct formation in wines initiated via the Fenton reaction, a novel tool was recently developed in our laboratory to quantify the resistance of wines against oxidation3.

Membrane contactor: a sustainable technology to remove dissolved oxygen from wine and preserve wine aroma

Oxygen management in wine is one of the most significant challenging issues for winemakers.