Terroir 2008 banner
IVES 9 IVES Conference Series 9 The role of the environmental factor as a component of the terroir in Spain (A.O. Cigales, NW Spain)

The role of the environmental factor as a component of the terroir in Spain (A.O. Cigales, NW Spain)

Abstract

The components and the methodology for characterization of the terroir in Spain have been described by Gómez-Miguel et al. (2003) and Sotés et al. (2003), taking into account the full range of environmental factors (i.e: climate, vegetation, topography, soils, altitude, etc.), landscape variables (derived from photo-interpretation and a digital elevation model) and specific variables of the country’s viticulture (i.e: size and distribution of vineyards, varieties, phenology, productivity, quality, designation regulations, etc.). This paper describes: the integration of the resulting database in a Geographic Information System (GIS) that allows the spatial and statistical analysis of all variables; the parametric system of variable quantification; the selection of main endogenous and exogenous variables for terroir characterization; and the role of the variables that describe the landscape in the final results. The analysis has been carried out over 2.4 million ha. This paper presents the results of a case studied in the Cigales region (A.O. Cigales) that expands on 62,210.5 ha and includes 2,351.5 ha of vineyards. The observed distribution of vineyards in this region is ¿well? correlated to the integrated landscape-terrain classification and productivity but does not depend on the total available area for cultivation. It is significant that a subset of geological formations that accounts for 59 percent of the total area sustains over 95 percent of the vineyards.
The results of the study have general implications for landscape-terrain classification in Spain and define a set of methodological guidelines: a) definition of the set of variables that define the landscape (characterization of the lithological and morphological components; homogenization of lithological units; cartography of the geological formations; integration of a digital elevation model to derive altitude, orientation, exposure and slope. The spatial scale should be at least 1:25,000); b) definition of the Homogeneous Land Units (UHM) (The parameter characterization was carried out from the units which were previously defined from the data of the environmental analysis); c) experimental design (Selection of Homogeneous Land Units and characterization within the units); d) final zoning: integration of the Homogeneous Land Unit with the plant (variety and rootstock) and the product (must and wine).

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

V. GOMEZ-MIGUEL (1) and V. SOTES (2)

Universidad Politécnica de Madrid. Avda Complutense s/n. 28040-Madrid, Spain

Contact the author

Keywords

terroir, zoning, landscape, climate, soil, GIS

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

An evaluation of the physiological responses of young grapevines planted and maintained under water constraint 

The aim of this ongoing study is to evaluate the degree of adaptability of grapevine scion:rootstock combinations to different conditions of water constraint. Here we present results from the young vine development phase, using three scenarios of water constraint that were implemented from planting. The experimental vineyard was established in 2020 and the data presented will cover the 2021/2022 and 2022/2023 seasons. The experiment consisted of the cultivars Pinotage (PIN), Shiraz (SHI) and Cabernet Sauvignon (CAB), grafted on two rootstocks, Richter 110 (R110) and USVIT-8-7 (US87).

Reduced berry skin epi-cuticular wax and cutin accumulation associates with a genomic deletion and increased polyphenols extractability in a clone of Tempranillo Tinto 

Tempranillo Tinto (TT) is the third-most planted red wine variety in the world, and it is mostly grown in the Iberian Peninsula. Spontaneous somatic variation appearing during vegetative propagation can be exploited to improve elite varieties as Tempranillo Tinto, including the selection of new phenotypes enhancing berry quality. We described previously that a somatic variant of TT with darker fruit color, the clone VN21, exhibits increased extractability of polyphenols during the winemaking process. To unravel the molecular mechanism underlying this phenomenon, we performed whole-genome resequencing to compare VN21 to other TT clones, revealing a 10 Mb deletion in chromosome 11 that likely affected only the L1 meristem cell layer of VN21 and tissues derived from it, such as external cell layers of berry skin.

Investigating biotic and abiotic stress responses in grafted grapevine cultivars: A comparative study of Cabernet-Sauvignon and Cabernet Volos on M4 rootstock

When grapevine plants are transplanted into already established vineyards, they face multiple challenges, including adverse climate, heavy metal accumulation from agronomic practices [1], and pressure from highly adapted pathogens [2].

Upscaling the integrated terroir zoning through digital soil mapping: a case study in the Designation of Origin Campo de Borja

homogeneous zones by intersecting several partial zonings of major factors that influence vineyard growth. Each of them follows specific process from their corresponding disciplines. Soil zoning specifically refers to a Soil Resource Inventory map that has traditionally been generated by conventional soil mapping methods. These methods have shortcomings in reaching fine cartographic and categorical details and involve significant expenses, which undermines their applicability. A new framework named Digital Soil Mapping has introduced quantitative models by statistical techniques to establish soil-landscape relationships and is able to provide intensive scale cartography.

In the present study, a microzoning at 1:10.000 scale is generated from an initial zoning, where the conventional soil map with polytaxic map units is replaced by a new one from digital techniques that disaggregates them. The comparison between the zonings considers a quantitative evaluation of capability for each Homogeneous Terroir Unit by means of the Viticultural Quality Index and its categorization based on its distribution by map. The spatial intersection of both maps gives rise to a confusion matrix in which the flows of class variations after the substitution are assessed.

The results show a five-fold increase in the number of Homogeneous Terroir Units identified and a larger differentiation among them, evidenced by a wider range in the capability index distribution. Both elements are accompanied by an increase in the detection of areas of higher potential within previously undervalued uniform zones.These features are a direct effect of the improvements brought by Digital Soil Mapping techniques and would verify the advantages of their implementation in the Integrated Terroir zoning. Eventually, such new highly detailed terroir units would benefit precision viticulture and sustainable management practices.

Embracing innovation for a future-ready wine industry: insights from Moldova’s AI-powered pilot project

In 2023–2024, the Republic of Moldova launched its first AI-powered wine pilot, integrating artificial intelligence into the vitivinicultural value chain.