Terroir 2008 banner
IVES 9 IVES Conference Series 9 Remote sensing and ground techniques, applied to the characterization of a new viticultural region at Pinto Bandeira, Brazil

Remote sensing and ground techniques, applied to the characterization of a new viticultural region at Pinto Bandeira, Brazil

Abstract

The region of viticultural production near Pinto Bandeira, Brazil, is being studied to define typical characteristics of wines locally produced. Vineyards above altitudes of 500m qualify as “Mountain Wines”, a geographical denomination. Rocks, soils, and wines are analyzed. Several techniques are used: remote sensing, radiometry, and chemical analysis. Results indicate that elements (Fe, Cu, Mg, Al, and others) from rocks and soils are not detected in wines. However, minerals present in rocks and soils (montmorillonite, mordenite, illite) can be traced in wines, indicating a transmission of soils descriptors to wines. Geological maps of the region were generated from images of SPOT, Landsat and ASTER satellites.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

André Luis Silva COUTINHO (1), Jorge Ricardo DUCATI (1), Rosemary HOFF (2,1)

(1) Pesquisas em Sensoriamento Remoto e Meteorologia
Universidade Federal do Rio Grande do Sul Av. Bento Gonçalves 9500 – CEP 91501-970
Porto Alegre, Brasil
(2) Centro Nacional de Pesquisas em Uva e Vinho
Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA Bento Gonçalves, Brasil

Contact the author

Keywords

geographical indication, remote sensing, radiometry, soils

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Novel analytical technologies for wine fingerprinting in and beyond the laboratory

For characterization, sensory designing and authentication rapid analytical technologies have become available. Some, like Proton Transfer Reaction Mass Spectrometry allow a rapid spectrum of the volatile compounds of wines. Combined with chemometrics wines can be characterized. The same approach can be used to calculate the results of virtual mixtures and allow formulation of constant quality blends. Other new techniques and portable devices based on spectroscopy allow measurements on production sites and in grocery stores, even for the smart consumer. We will present some examples of the application of these techniques for authentication of wines, both in the laboratory and on site.

ABOUT THE ROLE PLAYED BY THE DIFFERENT POLYPHENOLS ON OXYGEN CONSUMPTION AND ON THE ACCUMULATION OF ACETALDEHYDE ANDSTRECKER ALDEHYDES DURING WINE OXIDATION

In a previous work1, it was suggested that the different contents in delphinidin and catechin of the grapes were determinant on the O2 consumption and Strecker aldehyde (SAs) accumulation rates. Higher delphinidin seemed to be related to a faster O2 consumption and a smaller SAs accumulation rate, and the opposite was observed regarding catechin.
In the present paper, these observations were fully corroborated by adding synthetic delphinidin to a wine model containing polyphenolic fractions (PFs) extracted from garnacha and synthetic catechin to a wine model containing PF extracted from tempranillo: The delphinin-containing garnacha model consumed O₂ significantly faster and accumulated significantly smaller amounts of SAs than the original garnacha model, and the catechin-containing tempranillo model, consumed O2 significantly slower and accumulated significantly higher amounts of SAs than the original tempranillo model.

Optimized protocol for high-quality RNA extraction from grape tissues using sorbitol pre-wash

Obtaining high-quality RNA from grape tissues, including berry pulp, berry skins, stems, rachis, or roots, is challenging due to their composition, which includes polysaccharides, phenolic compounds, sugars, and organic acids that can negatively affect RNA extraction. For instance, polyphenols and other secondary metabolites can bind to RNA, making it difficult to extract a pure sample. Additionally, RNA can co-precipitate with polysaccharides, leading to lower extraction yield. Also, sugars and organic acids can interfere with the pH and ionic properties of the extraction buffer. To address these challenges, we optimized a protocol for RNA isolation from grape tissues.

Wine by-products valorisation by green chemistry methods: Impact of the extraction process on the structure, functionalities and activity of the extracted molecules

Wine by-products valorisation by green chemistry methods: Impact of the extraction process on the structure, functionalities and activity of the extracted molecules

Impact of genotypic variability on grapevine architecture and light interception: A functional-structural modelling approach

Aerial architecture plays a key role in plant functioning as it affects light interception and microclimate. In grapevine, this architecture is primarily shaped by winter pruning and further adjusted through practices such as leaf thinning and topping during the growth cycle.