Terroir 2008 banner
IVES 9 IVES Conference Series 9 Remote sensing and ground techniques, applied to the characterization of a new viticultural region at Pinto Bandeira, Brazil

Remote sensing and ground techniques, applied to the characterization of a new viticultural region at Pinto Bandeira, Brazil

Abstract

The region of viticultural production near Pinto Bandeira, Brazil, is being studied to define typical characteristics of wines locally produced. Vineyards above altitudes of 500m qualify as “Mountain Wines”, a geographical denomination. Rocks, soils, and wines are analyzed. Several techniques are used: remote sensing, radiometry, and chemical analysis. Results indicate that elements (Fe, Cu, Mg, Al, and others) from rocks and soils are not detected in wines. However, minerals present in rocks and soils (montmorillonite, mordenite, illite) can be traced in wines, indicating a transmission of soils descriptors to wines. Geological maps of the region were generated from images of SPOT, Landsat and ASTER satellites.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

André Luis Silva COUTINHO (1), Jorge Ricardo DUCATI (1), Rosemary HOFF (2,1)

(1) Pesquisas em Sensoriamento Remoto e Meteorologia
Universidade Federal do Rio Grande do Sul Av. Bento Gonçalves 9500 – CEP 91501-970
Porto Alegre, Brasil
(2) Centro Nacional de Pesquisas em Uva e Vinho
Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA Bento Gonçalves, Brasil

Contact the author

Keywords

geographical indication, remote sensing, radiometry, soils

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Viticulture between adaptation and resilience: the role of the Italian long-term observatories for vineyard energy, water and carbon budgets

Viticulture is exposed to a range of new stressors, that are challenging its sustainability and disrupting famous and well-established production regions. Steady increase of average temperature, recurring heat waves, altered rainfall seasonal distribution, drought spells, increased pathogens pressure, they all mix up with increased frequency, making every growing season a special challenge and calling for new approaches to cope with worrying scenarios.

The use of elicitors in viticulture: a tool to obtain highly colored wines with a reduce alcohol content?

Climate change is causing a gap between the technological and phenolic maturity of grapes, resulting in wines with high alcohol content and low polyphenol concentration. Another phenomenon associated with high temperatures and whose effect is more pronounced if the harvest is delayed is the decrease in the acidity of the grapes, mainly in malic acid, and an increase in pH caused by the accumulation of potassium derived from the increase in temperature. Therefore, climate change and the effects it causes on the vine leads to unbalanced wines, with high alcohol content and lack of color, with green tannins, astringency and excessively low acidity if not corrected.

Grapevine nitrogen retrieval by hyperspectral sensing at the leaf and canopy level

Grapevine nitrogen (N) monitoring is essential for efficient N management plans that optimize fruit yield and quality while reducing fertilizer costs and the risk of environmental contamination. Unlike traditional vegetative-tissue sampling methods, remote sensing technologies, including hyperspectral imaging, have the potential to allow monitoring of the N status of entire vineyards at a per-vine resolution. However, differential N partitioning, variable spectral properties, and complex canopy structures hinder the development of a robust N retrieval algorithm. The present study aimed to establish a solid understanding of vine spectroscopic response at leaf and canopy levels by evaluating the different nitrogen retrieval approaches, including the radiative transfer model.

An overview of geological influences on South African vineyards

The role of soils and bedrock geology has long been acknowledged as a fundamental component of terroir. In South Africa the influence of geology is misunderstood and some important geological components will be highlighted in this paper.

Genomics and phenomics of root system architecture in grapevine

Adapting viticulture to climate change is crucial, as it presents significant challenges for future grape production.