Terroir 2008 banner
IVES 9 IVES Conference Series 9 Remote sensing and ground techniques, applied to the characterization of a new viticultural region at Pinto Bandeira, Brazil

Remote sensing and ground techniques, applied to the characterization of a new viticultural region at Pinto Bandeira, Brazil

Abstract

The region of viticultural production near Pinto Bandeira, Brazil, is being studied to define typical characteristics of wines locally produced. Vineyards above altitudes of 500m qualify as “Mountain Wines”, a geographical denomination. Rocks, soils, and wines are analyzed. Several techniques are used: remote sensing, radiometry, and chemical analysis. Results indicate that elements (Fe, Cu, Mg, Al, and others) from rocks and soils are not detected in wines. However, minerals present in rocks and soils (montmorillonite, mordenite, illite) can be traced in wines, indicating a transmission of soils descriptors to wines. Geological maps of the region were generated from images of SPOT, Landsat and ASTER satellites.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

André Luis Silva COUTINHO (1), Jorge Ricardo DUCATI (1), Rosemary HOFF (2,1)

(1) Pesquisas em Sensoriamento Remoto e Meteorologia
Universidade Federal do Rio Grande do Sul Av. Bento Gonçalves 9500 – CEP 91501-970
Porto Alegre, Brasil
(2) Centro Nacional de Pesquisas em Uva e Vinho
Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA Bento Gonçalves, Brasil

Contact the author

Keywords

geographical indication, remote sensing, radiometry, soils

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Correlation between skin cell wall composition and phenolic extractability in Cabernet sauvignon wines

The phenolic component of red wine is responsible for important elements of flavor and mouthfeel, and thus quality of the finished wine. Additionally, many of these phenolics have been associated with health benefits such as reduction of the risk of developing cardiovascular disease, cancer, osteoporosis and preventing Alzheimer’s disease. While the origins, concentrations, and chemistries of the phenolics in a finished red wine are well known, the fundamental mechanisms and kinetics of extraction of these phenolics from grape skins and seeds during red wine fermentation are poorly understood. This lack of knowledge regarding the extraction mechanisms of phenolics during red wine fermentation makes informed manipulations of the finished wine’s phenolic composition difficult.

Challenges for the Implementation of commercial inoculum of arbuscular fungi in a commercial Callet vineyard (Vitis vinifera L.)

Over the past 70 years, scientific literature has consistently illustrated the advantageous effects of arbuscular mycorrhiza fungi (AMF) on plant growth and stress tolerance. Recent reviews not only reaffirm these findings but also underscore the pivotal role of AMF in ensuring the sustainability of viticulture. In fact, various companies actively promote commercial inoculants based on AMF as biofertilizers or biostimulants for sustainable viticulture. However, despite the touted benefits of these products, the consistent effectiveness of AMF inoculants in real-world field conditions remains uncertain.

HOW OXYGEN CONSUMPTION INFLUENCES RED WINES VOLTAMMETRIC PROFILE

Phenolic compounds play a central role in sensory characteristics of wine, such as colour, mouthfeel, flavour and determine its shelf life. Furthermore, the major non-enzymatic wine oxidation process is due to the catalytic oxidation of phenols in quinones. Due their importance, during the years have been developed different analytical methods to monitor the concentration of phenols in wine, such as Folin-Ciocalteu method, spectrophotometric techniques and HPLC. These methods can also be used to follow some oxidation-related chemical transformations.

Different oxygen and sulphur dioxide concentrations in ‘Sauvignon blanc’ must: effect on the composition of the must and wine

The effects of different oxygen and sulphur dioxide additions to South African ‘Sauvignon blanc’ musts were investigated. Oxygen addition without SO2 protection led to lower levels of certain volatile thiols in the wines, with a corresponding decrease in certain phenols and glutathione concentrations.

Simulating the impact of climate change on viticultural systems in various European vineyards

Aim: Global climate change affects regional climates and hold implications for wine growing regions worldwide (Jones, 2007, 2015; van Leeuwen and Darriet, 2016). The prospect of 21st century climate change consequently is one of the major challenges facing the wine industry (Keller, 2010).