Terroir 2008 banner
IVES 9 IVES Conference Series 9 Contribution of viticultural and oenological factors to the aromatic potential of white Colombard wines from the south west of France Gascony vineyard

Contribution of viticultural and oenological factors to the aromatic potential of white Colombard wines from the south west of France Gascony vineyard

Abstract

The aim of this work is to determine the influence of viticultural and oenological factors to the aromatic potential of white wines from Colombard variety in the south west of France Gascony vineyard. The main aromatic sensing of Colombard wine comes from two varietal thiols: 3-MercaptoHexan-1-ol (3MH) and its acetate (Ac3MH). These compounds are released by enzymatic activities from yeasts during alcoholic fermentation.
The protocol consists to uptake 65 samples of grapes at their arrival in the wineries during harvest. With them, we have constructed a data base including agronomical-viticultural factors and chemical analysis on grape and must. Further, the grapes have been processed into white wines in our experimental winery at a pilot scale of 25 liters in standardized conditions. Some oenological variables as fermentation rate or turbidity have been associated to the base.
These data have been explored in the order to predict the concentrations in varietal thiols in wines and also in relation with sensory perception by expert winemakers.
First results show that, for the vintage 2006, training system factors do not mainly contribute to the aromatic potential of the wine. Nitrogen concentration of the must, inducing high fermentation rate appears to be more reliable with varietal thiols concentration in wine. Also, samples harvested in the later period show a higher aromatic level in both 3MH and Ac3MH.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

T. DUFOURCQ (1), F. BONNEAU (1), A. DESPRATS (2), E. SERRANO (1)

(1) IFV (ENTAV-ITV France), Midi-Pyrénées, V’INNOPOLE, 81310 Lisle/Tarn, France
(2) Syndicat des Vins de Pays des Côtes de Gascogne, route de Cazaubon, BP2, 32800 Eauze, France

Contact the author

Keywords

3MH, Ac3MH, multivariable analysis, Colombard, Gascony

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

The impact of sustainable management regimes on amino acid profiles in grape juice, grape skin flavonoids, and hydroxycinnamic acids

One of the biggest challenges of agriculture today is maintaining food safety and food quality while providing ecosystem services such as biodiversity conservation, pest and disease control, ensuring water quality and supply, and climate regulation. Organic farming was shown to promote biodiversity and carbon sequestration, and is therefore seen as one possibility of environmentally friendly production. Consumers expect organically grown crops to be free from chemical pesticides and mineral fertilizers and often presume that the quality of organically grown crops is different or higher compared to conventionally grown crops. Integrated, organic, and biodynamic viticulture were compared in a replicated field trial in Geisenheim, Germany (Vitis vinifera L. cv. Riesling). Amino acid profiles in juice, grape skin flavonoids, and hydroxycinnamic acids were monitored over three consecutive seasons beginning 7 years after conversion to organic and biodynamic viticulture, respectively. In addition, parameters such as soil nutrient status, yield, vigor, canopy temperature, and water stress were monitored to draw conclusions on reasons for the observed changes. Results revealed that the different sustainable management regimes highly differed in their amino acid profiles in juice and also in their skin flavonol content, whereas differences in the flavanol and hydroxycinnamic acid content were less pronounced. It is very likely that differences in nutrient status and yield determined amino acid profiles in juice, although all three systems showed similar amounts of mineralized nitrogen in the soil. Canopy structure and temperature in the bunch zone did not differ among treatments and therefore cannot account for the observed differences in favonols. A different light exposure of the bunches in the respective systems due to differences in vigor together with differences in berry size and a different water status of the vines might rather be responsible for the increase in flavonol content under organic and biodynamic viticulture.

Anthocyanin and trans-resveratrol accumulation is associated with abscisic acid and methyl jasmonicanthocyanin and trans-resveratrol accumulation is acid in berry skin of vitis vinifera L. Cvs. Malbec, Bonarda, Syrah, Cabernet sauvignon, and Pinot noir

Red grapes contain significant amounts of phenolic compounds, known to contribute to wine quality and to provide important health benefits. Berry skin phenolics can be elicited by plant hormones. The aim of this work was to increase the content of anthocyanins and trans-resveratrol in five red varieties cultured in Argentina: Malbec (M), Bonarda (B), Syrah (S), Cabernet Sauvignon (CS), and Pinot Noir (PN), in two different growing regions: Santa Rosa (SR) and Valle de Uco (VU), by applying a post-veraison hormonal treatment with abscisic acid (ABA) and methyl jasmonate (MeJA).

Image based vineyard yield prediction using empirical models to estimate bunch occlusion by leaves

Vineyard yield estimation brings several advantages to the entire wine industry. It can provide useful information to support decision making regarding bunch thinning practices, harvest logistics and marketing strategies, as well as to manage stored wine and cellar tanks allocation. Today, this estimation is performed mainly using manual methods based on destructive bunch sampling.

From average to individual fruit, a paradigm shift for accurate analysis of water accumulation and primary metabolism in developing berries

Presentknowledge about grape development is mainly driven by the premise that a typical berry would follow the same kinetics as the population average

Development and validation of a standardized oxidation assay for the accurate measurement of the ability of different wines to form “de novo” oxidation-related aldehydes

From the standpoint of wine aroma oxidation there are two effects observed: aroma degradation of oxygen sensitive compounds (polyfunctional mercaptans) and the appearance of new substances with high aromatic power (acetaldehyde, methional, phenylacetaldehyde, sotolon, alkenals, isobutanal and 2, 3-metylbutanals) (1-5). According to our experience, Strecker aldehydes are compounds with highest sensory relevance in the oxidative degradation of many wines (5-7).