Terroir 2008 banner
IVES 9 IVES Conference Series 9 Influence of the year and the environmental factors on condensed tannins from Cabernet franc grapes

Influence of the year and the environmental factors on condensed tannins from Cabernet franc grapes

Abstract

The composition in condensed tannins of the grape berries is essential for the quality of the harvest. Proanthocyanidins have a significant influence on the organoleptic properties of the red wines.
The influence of the environmental factors on the Cabernet franc composition in condensed tannins was studied in Saumurois and Touraine. For 3 years, a network of 14 plots was conducted in an identical way in terms of viticultural management. The biochemical composition of the berries was analysed, in particular for the condensed tannins, by RP-HPLC after fractionation and thiolysis.
The results showed that the type of soil did not discriminate the plots. However, the quantity of tannins was influenced by the climatic variables except for sunshine. The duration of the vegetative cycle and its precocity had a significant influence on the percentage in prodelphinidin. The average degree of polymerization was correlated with the delta C13 and with rainfall between flowering and ripening. This study showed a year effect on the content of tannins, expressed in g/kg, the DPm and the percentage in prodelphinidin. The proportion in galloyled units was correlated with the water stress during the period previous veraison and by the vigour of the vine.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Réjane CHAMPENOIS, Yves CADOT, Nicolas BOTTOIS, Gérard BARBEAU

INRA, UE 1117 Vigne et Vin, F-49070 Beaucouzé, France

Contact the author

Keywords

terroir, tanins condensés, Cabernet franc, Vitis vinifera

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Effect of “Terroir” on quanti-qualitative paramethers of “vino nobile di Montepulciano”

In this last ten years period, there has been many integrated and interdisciplinary studies to determine the aptitude of different zones to viticulture (Lulli et al., 1989 ; Costantini, 1992 ; Fregoni et al., 1992). The researches needed some différent knowledges about environment characteristics (soil, climate), ecology, vineyard management, vine genetic, winemaking and sensory analysis. The interaction of all these knowledge produced the assessment about the environmental vocation (Scienza et al., 1992). By means of this metodology, the “viticultural vocation” joined the word “zoning”, that is the territory parting for its ecopedological and geographical characteristics in relation to adaptative answer of winegrape (Morlat, 1989).

Extraction of pathogenesis-related proteins and phenolics in Sauvignon Blanc as affected by different

The composition of wine is largely determined by the composition of pre-fermentation juice, which is influenced by extraction of grape components. Different grape harvesting and processing conditions could affect the extraction of grape components into juice. Among these grape components, pathogenesis-related (PR) proteins are of great concern for white wine maker as they are the main cause of haze formation in finished white wine. If not removed before bottling, these PR proteins may progress into haze through the formation of complex with phenolics under certain conditions. Thaumatin-like proteins (TLPs) and chitinases are the main constituents of PR proteins found in protein haze.

An overview of the impact of clone, environmental factors and viticultural techniques on rotundone concentration in red wines

Rotundone is the main aroma compound responsible for peppery notes in red wine. This positive and very potent molecule has an odor threshold of 8 ng/L in water and 16 ng/L in red wine. It has been detected in several grape varieties with some of the highest concentrations recorded in Syrah, Duras, Tardif and Noiret, an interspecific hybrid grown in the North-East of the USA. If several winemaking practices have been identified to lower rotundone in wine, up to date, no enological solution has proved its efficiency to maximize it. This means that efforts to produce high rotundone wines must be undertaken in vineyards. This work provides practical ways that can be used by winegrowers to modulate rotundone levels in their wines.

Importance of the Terror Variability Map (TVM) in Precision viticulture (PV): choice of methodology for soil classification

The Precision Viticulture (PV) is defined “as a management system that is information and technology based, is site specific and uses one or more of the following sources of data: soils, vigour, nutrients, pests, moisture, and yield among others, for optimum profitability, sustainability, and protection of the environment” (OIV, 2018, in process). The elements mentioned in the definition are an important part of the terroir components. The terroir is a tool In Viticulture, it is the analysis and study unit, and the variability of a certain situation can be due to any difference in every element or property of each factor that constitutes it, including the management.The soil and its management are those that bring the most variability to terroir.

New molecular evidence of wine yeast-bacteria interaction unraveled by untargeted metabolomic profiling

Bacterial malolactic fermentation (MLF) has a considerable impact on wine quality. The yeast strain used for primary fermentation can consistently stimulate (MLF+ phenotype) or inhibit (MLF- phenotype) malolactic bacteria and the MLF process as a function of numerous winemaking practices, but the molecular evidence behind still remains a mystery. In this study, such evidence was elucidated by the direct comparison of extracellular metabolic profiles of MLF+ and MLF- yeast phenotypes. Untargeted metabolomics combining ultrahigh-resolution FT-ICR-MS analysis, powerful machine learning methods and a comprehensive wine metabolite database, discovered around 800 putative biomarkers and 2500 unknown masses involved in phenotypic distinction.