Terroir 2008 banner
IVES 9 IVES Conference Series 9 Influence of the year and the environmental factors on condensed tannins from Cabernet franc grapes

Influence of the year and the environmental factors on condensed tannins from Cabernet franc grapes

Abstract

The composition in condensed tannins of the grape berries is essential for the quality of the harvest. Proanthocyanidins have a significant influence on the organoleptic properties of the red wines.
The influence of the environmental factors on the Cabernet franc composition in condensed tannins was studied in Saumurois and Touraine. For 3 years, a network of 14 plots was conducted in an identical way in terms of viticultural management. The biochemical composition of the berries was analysed, in particular for the condensed tannins, by RP-HPLC after fractionation and thiolysis.
The results showed that the type of soil did not discriminate the plots. However, the quantity of tannins was influenced by the climatic variables except for sunshine. The duration of the vegetative cycle and its precocity had a significant influence on the percentage in prodelphinidin. The average degree of polymerization was correlated with the delta C13 and with rainfall between flowering and ripening. This study showed a year effect on the content of tannins, expressed in g/kg, the DPm and the percentage in prodelphinidin. The proportion in galloyled units was correlated with the water stress during the period previous veraison and by the vigour of the vine.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Réjane CHAMPENOIS, Yves CADOT, Nicolas BOTTOIS, Gérard BARBEAU

INRA, UE 1117 Vigne et Vin, F-49070 Beaucouzé, France

Contact the author

Keywords

terroir, tanins condensés, Cabernet franc, Vitis vinifera

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Using remote sensing to quantify the temporal and spatial effects of extreme weather events in vineyards

The increasing frequency of extreme weather events (EWE) represents a severe threat to viticulture.

Overhead spray water treatment as a mitigation strategy for reducing vine stress and preserving grape quality during heatwaves

Changes in climate have been influencing the quality of wine grapes worldwide. The impact of extreme climate events over short periods is increasingly recognized as a serious risk to grape quality and yield quantity. In this study the mitigation effects of a pulsed water spray on vine canopy during heatwave events has been evaluated for maintaining vine condition during the growing season and grape quality. Vines of three varieties (Malbec, Bonarda, and Syrah) under drip irrigation in the UNCuyo experimental vineyard were treated with an overhead pulsed water spray.

Characterization of resistant varieties produced in the context of a search for regional typicality

Planted between 2018 and 2019, the ‘New Vine’ system is a vineplot, comprising 169 individuals genotypes (5 vines/individual), located on a gravelous soil, in the INRAE Grande-Ferrade site (Villenave d’Ornon, France).

Cordon height and deficit irrigation practices interact to affect yield and fruit quality of Cabernet Sauvignon and petite Sirah grown in a hot climate

Cabernet Sauvignon and Petite Sirah are the top red wine cultivars in CA, however, the hot climate in Fresno is not ideal for red Vitis Vinifera, particularly for berry color development. Mechanical pruning and irrigation were studied previously to significantly affect grapevine yield performance and berry quality. But there is lack of studies on cordon height and irrigation on mechanical pruned vineyard system.

Metal reducing agents (Fe and Al) as possible agents to measure the dimensions of the hydrogen sulfide (H2S) pool of precursors in wines

Reductive wine fault is characterized by the presence of odors such as rotten eggs or spoiled camembert cheese, originating from hydrogen sulfide (H2S) and methanethiol (MeSH) [1]. These compounds stabilize in polysulfide forms, creating a complex pool of precursors that will revert to both molecules when the environment becomes anoxic [2].