Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Global approach and application of terroir studies: product typicity and valorisation 9 Characteristics of some Montefalco Sagrantino vineyards through polyphenolic components

Characteristics of some Montefalco Sagrantino vineyards through polyphenolic components

Abstract

Characteristics related to the climate and the soil of Montefalco in the centre of Italy have been defined in order to evaluate their influence on the red cv. Sagrantino, focusing on the phenolic evolution. Considering six vintages (2001-2006) six areas were compared: Torre, Poggio Allegro, Poggio Allodole, Valle Gualdo, Montepennino, Pietrauta. During ripening stage different sampling were carried out in the six different areas to check technological maturation (sugar, acidity and pH) and the phenolic content (Mattivi, 2002). Each area was characterized by the pedological and climatic point of view (pedological analysis, Winkler index, PPAR and rains). Among the vintages considered, 2003 presents a higher sugar content and a definitely lower content in anthocyanins, while polyphenols are higher. In the cold and rainy 2002, acidity and pH turned out higher and lower respectively. Torre is the area with the highest amount of total poliphenols, with a good contribution from the pips. To Poggio Allegro and Poggio Allodole correspond skins richer in anthocyanins. The weight average of berries is in the varietal standards for every site. Instead from Valle Gualdo turn out grapes with higher sugar contents. However there isn’t a decisive influence of the soil over the polyphenolic composition. The results show that in Montefalco area the climate influence and exposure to sunlight are determinant even though differently according to the area. While soil seems to influence less the concentrations of polyphenols and anthocyanins.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

VALENTI L. (1), MATTIVI F. (2), GOZZINI A. (1), CARLETTI F. (1), CONOSCENTE M. (1)

(1) Università degli studi di Milano, Facoltà di Agraria, Dipartimento di Produzione Vegetale, via Celoria 2, 20133 Milano
(2) Istituto Agrario di San Michele all’Adige (IASMA), Centro Sperimentale, Dipartimento Qualità Agro-Alimentare, Via E. Mach, 1 – 38010 San Michele all’Adige

Contact the author

Keywords

terroir, concentration en polyphénols, influences climatiques, caractérisation pédologique 

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Cover crops influence on soil N availability and grapevine N status, and its relationship with biogenic

The type of soil management, tillage versus cover crops, can modify the soil microbial activity, which causes the mineralization of organic N to NO3–N and, therefore, may change the soil NO3–N availability in vineyard. The soil NO3–N availability could influence the grapevine nutritional status and the grape amino acid composition. Amino acids are precursors of biogenic amines, compounds mainly formed during the malolactic fermentation. Biogenic amines have negative effects on consumer health and on the wine organoleptic quality. The objective was to study if the effect of conventional tillage and two different cover crops (leguminous versus gramineous) on grapevine N status, could relate to the wine biogenic amines composition.

Influence of agronomic practices in soil water content in mid-mountain vineyards

In the context of LIFE project MIDMACC (LIFE18 CCA/ES/001099), several pilots have been installed in vineyards in mid mountain areas of Catalonia (NE Spain) to test well stablished agronomic practices to increase the adaptation of Mediterranean mid mountain to climate change. Soil water content (SWC) at three different depths (15, 30 and 45cm) was measured in continuum from August 2020. One pilot (WC) included a well-established green cover (GC), a new GC (NC) and a conventional soil management (CM, tilling+herbicides). NC presented an intermediate state between WC and CM, responding similarly to CM in autumn but quickly reaching similar SWC to WC, then following the same evolution till next spring, with CM presenting lower values along autumn and winter. Then vegetation activation decreased SWC in all plots, (much slower in CM, lacking GC). Sensibility to spring rains is again intermediate for NC, which joins SWC evolution of CM by the end of spring till next autumn. It is expected that NC will resemble WC more and more as its GC develops. In the pilot combining vine training (VSP vs Gobelet) and hillside management (slope vs terrace), no clear pattern could be related with these conditions. However, both terraces seem to be more sensitive to spring rains. A third pilot included new vineyards (7 and 1 year old). In the new vineyard (N), higher canopy development, a spontaneous green cover and row straw resulted in a slower SWC dynamic, not so sensitive to rains but conserving more soil water in spring and most of summer, even with presumably a higher water extraction by vines. In the newest vineyard (VN) the deepest sensor is still sensitive to rain events all over the year and SWC is always highest at this depth, revealing small water capture by vines.

Influence of agrophotovoltaic on vine and must in a cool climate

The current energy crisis means that interest in agrophotovoltaics has increased significantly. The reason behind this is that the system aims to combine agricultural production with energy production. During the three-year period from 2020 to 2022, the effects of photovoltaic panels on the vine, the yield and the quality of the must were studied in Walenstadt in northern Switzerland, an area with a cool, humid climate. 65 Pinot noir vines were planted in the 160m2 study area. Because of the large edge effects, only 3 repetitions with 4 vines each could be created. A significantly lower leaf infestation by Plasmopara viticola was observed among the panels in each of the three years.

Geographical indication “Brandy Italiano”: study on the influence of wood barrel toasting and natural seasoning on endogenous and wood-derived compounds of aged distillates

The European geographical indication (GI) Brandy Italiano is exclusively reserved to brandy obtained in Italy from the distillation of wine from grapes grown and vinified in the national territory [1].

Exploring the resistance of non-Saccharomyces wine yeasts to dehydration-rehydration processes

AIM: The use of non-Saccharomyces (NS) yeasts in multi-starter fermentations with S. cerevisiae is a trend in the wine industry, but the number of strains commercially available in a powder formulation, such as active dry yeasts (ADY), is still limited.