Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Global approach and application of terroir studies: product typicity and valorisation 9 Characteristics of some Montefalco Sagrantino vineyards through polyphenolic components

Characteristics of some Montefalco Sagrantino vineyards through polyphenolic components

Abstract

Characteristics related to the climate and the soil of Montefalco in the centre of Italy have been defined in order to evaluate their influence on the red cv. Sagrantino, focusing on the phenolic evolution. Considering six vintages (2001-2006) six areas were compared: Torre, Poggio Allegro, Poggio Allodole, Valle Gualdo, Montepennino, Pietrauta. During ripening stage different sampling were carried out in the six different areas to check technological maturation (sugar, acidity and pH) and the phenolic content (Mattivi, 2002). Each area was characterized by the pedological and climatic point of view (pedological analysis, Winkler index, PPAR and rains). Among the vintages considered, 2003 presents a higher sugar content and a definitely lower content in anthocyanins, while polyphenols are higher. In the cold and rainy 2002, acidity and pH turned out higher and lower respectively. Torre is the area with the highest amount of total poliphenols, with a good contribution from the pips. To Poggio Allegro and Poggio Allodole correspond skins richer in anthocyanins. The weight average of berries is in the varietal standards for every site. Instead from Valle Gualdo turn out grapes with higher sugar contents. However there isn’t a decisive influence of the soil over the polyphenolic composition. The results show that in Montefalco area the climate influence and exposure to sunlight are determinant even though differently according to the area. While soil seems to influence less the concentrations of polyphenols and anthocyanins.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

VALENTI L. (1), MATTIVI F. (2), GOZZINI A. (1), CARLETTI F. (1), CONOSCENTE M. (1)

(1) Università degli studi di Milano, Facoltà di Agraria, Dipartimento di Produzione Vegetale, via Celoria 2, 20133 Milano
(2) Istituto Agrario di San Michele all’Adige (IASMA), Centro Sperimentale, Dipartimento Qualità Agro-Alimentare, Via E. Mach, 1 – 38010 San Michele all’Adige

Contact the author

Keywords

terroir, concentration en polyphénols, influences climatiques, caractérisation pédologique 

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Within-vineyard variability in grape composition at the estate scale can be assessed through machine-learning modeling of plant water status in space and time. A case study from the hills of Adelaida District AVA, Paso Robles, CA, USA

Aim: Through machine-learning modelling of plant water status from environmental characteristics, this work aims to develop a model able to predict grape phenolic composition in space and time to guide selective harvest decisions at the estate scale.

Supporting wine production from vineyard to glass through secure IoT devices and blockchain

Temperature fluctuations can significantly affect the chemical composition of wine and in turn its taste and aromas.

Studying heat waves effects on berry composition: first outlooks and challenges

Extreme climatic events, such as prolonged drought followed by intense flooding, increasingly impact viticulture, affecting vine physiology, productivity, and grape composition.

Exploiting the diversity in spent yeast for its valorisation towards producing yeast-derived processing aids

In view of sustainability and zero-waste initiatives, the valorisation of sidestreams is a key emerging topic in the wine industry.

Plant regeneration via somatic embryogenesis and preliminary trials for the application of the DNA-free genome editing in grapevine cv. Corvina veronese

Grapevine (Vitis spp.) is a globally significant fruit crop, and enhancing its agronomic and oenological traits is crucial to meet changing agricultural conditions and consumer demands. Conventional breeding has played a key role in domesticating grapevine varieties, but it is a time-consuming process to develop new cultivars with desirable traits for cultivation.
New plant breeding techniques (NpBTs) offer a potential revolution in grapevine cultivation, and genome editing has shown promise for targeted mutagenesis. The success of these biotechnological approaches relies on efficient in vitro regeneration protocols, particularly through somatic embryogenesis (SE).