The performance of grapevines on identified terroirs in Stellenbosch, South Africa

Abstract

A terroir can be defined as a natural unit that is characterised by a specific agricultural potential, which is imparted by natural environmental features, and is reflected in the characteristics of the final product. Preliminary terroirs were defined for Stellenbosch for Sauvignon blanc and Cabernet Sauvignon using decision trees built on analyses of viticultural, oenological and environmental data measured on a network of plots over 7 seasons. This study was considered to be a preliminary approach to determine the validity of terroir studies for the South African wine industry.
It was expected that measurement of viticultural and oenological variables would serve to validate or refine the decision trees constructed with the first set of data and that the measurement of ecophysiological parameters on a separate network of reference plots would facilitate improved understanding of the grapevine x terroir interaction. Three plots of 10 vines each were therefore identified in selected commercial vineyards of Cabernet Sauvignon and Sauvignon blanc using remote sensing as a tool to identify homogenous plots where possible. These vineyards were representative of dominant terroir units that were identified for each cultivar. This network of experimental plots was monitored with respect to their ecophysiological response to the growing environment. This included dynamics of canopy development, vegetative growth, dynamics of berry growth and composition and wine character. Pre-dawn leaf water potential was determined at different stages during the growth season. The growing environment was characterised with respect to soil and climate by means of direct observations and measurements and interpolated values from the agroclimatic weather station network.
This paper will examine the results from three seasons for selected Sauvignon blanc and Cabernet Sauvignon vineyards from this network and compare these results to previous findings.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Victoria A CAREY (1), Valérie BONNARDOT (2), Zelmari COETZEE (3) & Laure DU COS DE ST BARTHELEMY (4)

(1) Lecturer and 3 Technical assistant, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, 7602 Matieland, South Africa
(2) Agroclimatological consultant, Bureau d’Études et de Recherches en Climatologie Appliquée à la Viticulture
(4) Masters student, SupAgro Montpellier and affiliated student, Stellenbosch University

Contact the author

Keywords

Sauvignon blanc, Cabernet Sauvignon, soil, ecophysiology, Stellenbosch

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

A browser application for comprehensive 3-dimensional LC × LC × IM – MS data analysis to study grape and wine polyphenols

The analysis of structurally diverse proanthocyanidins in grapes and wine is challenging. Comprehensive two-dimensional liquid chromatography (LC×LC) and ion mobility spectrometry-mass spectrometry (IMS-MS) are increasingly used to address the challenges associated with the analysis of highly complex samples such as wine and grapes

Simulating single band multispectral imaging from hyperspectral imaging: A study into the application of single band visible to near-infrared multispectral imaging for determining table grape quality

To be accepted by the market and consumers table grapes need to meet certain requirements in terms of physical and chemical quality parameters.

Ellagitannins and flavano-ellagitannins: concentration ranges in different areas and sensory evaluation

C-Glucosidic ellagitannins, which are the main polyphenolic compounds in oak heartwood, are extracted by wine during aging in oak barrels. Although such maturing of alcoholic beverages in oak barrels is a multi-centennial practice, very little is known on the impact of these ellagitannins on the organoleptic properties of red wine. The objectives of the present investigation were (i) to isolate oak ellagitannins and to hemisynthesize some made-in-wine flavano-ellagitannins, such as acutissimin A; (ii) to analyse their concentration ranges depending on the cultivar area and (iii) to evaluate their sensory impact on the basis of their human threshold concentrations and dose/response relationships in different types of solutions.

Terroir traceability in grapes, musts and wine: results of research on Gewürztraminer and Sauvignon Blanc grape varieties in northern Italy

In the study of terroir, a separate analysis of its many component factors can be of great help in accurately identifying a vineyard’s natural elements that impact wine quality and typicity. This research used a dedicated pluri-disciplinary approach to investigate the ecological characteristics, including geology and geographical features, of 14 vineyards that produce Gewürztraminer and Sauvignon Blanc cultivars in the alpine Alto Adige DOC wine region. Both the geopedological method using Vineyards Geological Identity (VGI) and the new Solar Radiaton Identity (SRI) topoclimatic classification method were used to provide analytical measurements and qualitative/quantitative characterisations. In addition, wide-ranging targeted and untargeted oenological and chemical analyses were carried out on grapes, musts and wines to correlate the soils’ geomineral and physical conditions with the biochemical properties of their fruits and wines. The research identified strong correlations between vineyard geo-identity and wine biofingerprint, confirming a mineral traceability of strontium rubidium ratio and some minerals distinctive to the local geology, such as K, Ca, Ag, Ba and Mn.  The study also discovered that particular geomineral and physical soil conditions of the studied vineyards are related to the different amount of amino acids, primary varietal aromas and polyphenols found in grapes, musts and wines. The research confirmed that winemaking technologies support oenological quality, although in some cases, human practices can overpower certain characteristic elements in wine, erasing the typical imprint left by the vineyards’ natural terroir, which becomes less traceable. Terroir abiotic ecological factors and vineyard identity can be classified in detail using the new VGI and SRI analysis methods to discover interrelationships between geo-pedological and topoclimatic conditions that impact wine quality. These methods are also helpful in identifying which ecological elements are exclusive to a particular vineyard or wine sub-region.

Wine tourism as a catalyst for sustainable competitive advantage: unraveling the role of winery image and reputation

This study examines the impact of wine tourism development on the sustainable competitive advantage of Spanish wineries, while also exploring the mediating roles of winery image and winery reputation in this relationship.