Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Global approach and application of terroir studies: product typicity and valorisation 9 The performance of grapevines on identified terroirs in Stellenbosch, South Africa

The performance of grapevines on identified terroirs in Stellenbosch, South Africa

Abstract

A terroir can be defined as a natural unit that is characterised by a specific agricultural potential, which is imparted by natural environmental features, and is reflected in the characteristics of the final product. Preliminary terroirs were defined for Stellenbosch for Sauvignon blanc and Cabernet Sauvignon using decision trees built on analyses of viticultural, oenological and environmental data measured on a network of plots over 7 seasons. This study was considered to be a preliminary approach to determine the validity of terroir studies for the South African wine industry.
It was expected that measurement of viticultural and oenological variables would serve to validate or refine the decision trees constructed with the first set of data and that the measurement of ecophysiological parameters on a separate network of reference plots would facilitate improved understanding of the grapevine x terroir interaction. Three plots of 10 vines each were therefore identified in selected commercial vineyards of Cabernet Sauvignon and Sauvignon blanc using remote sensing as a tool to identify homogenous plots where possible. These vineyards were representative of dominant terroir units that were identified for each cultivar. This network of experimental plots was monitored with respect to their ecophysiological response to the growing environment. This included dynamics of canopy development, vegetative growth, dynamics of berry growth and composition and wine character. Pre-dawn leaf water potential was determined at different stages during the growth season. The growing environment was characterised with respect to soil and climate by means of direct observations and measurements and interpolated values from the agroclimatic weather station network.
This paper will examine the results from three seasons for selected Sauvignon blanc and Cabernet Sauvignon vineyards from this network and compare these results to previous findings.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Victoria A CAREY (1), Valérie BONNARDOT (2), Zelmari COETZEE (3) & Laure DU COS DE ST BARTHELEMY (4)

(1) Lecturer and 3 Technical assistant, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, 7602 Matieland, South Africa
(2) Agroclimatological consultant, Bureau d’Études et de Recherches en Climatologie Appliquée à la Viticulture
(4) Masters student, SupAgro Montpellier and affiliated student, Stellenbosch University

Contact the author

Keywords

Sauvignon blanc, Cabernet Sauvignon, soil, ecophysiology, Stellenbosch

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Back to the roots: how an underutilised biotechnological tool can support research to improve grapevine resilience against biotic stressors in an unpredictable future

Hairy roots (HRs) are a symptom of a natural genetic modification by the soil-borne phytopathogen Rhizobium rhizogenes.

Soil, vine, climate change – what is observed – what is expected

To evaluate the current and future impact of climate change on Viticulture requires an integrated view on a complex interacting system within the soil-plant-atmospheric continuum under continuous change. Aside of the globally observed increase in temperature in basically all viticulture regions for at least four decades, we observe several clear trends at the regional level in the ratio of precipitation to potential evapotranspiration. Additionally the recently published 6th assessment report of the IPCC (The physical science basis) shows case-dependent further expected shifts in climate patterns which will have substantial impacts on the way we will conduct viticulture in the decades to come.
Looking beyond climate developments, we observe rising temperatures in the upper soil layers which will have an impact on the distribution of microbial populations, the decay rate of organic matter or the storage capacity for carbon, thus affecting the emission of greenhouse gases (GHGs) and the viscosity of water in the soil-plant pathway, altering the transport of water. If the upper soil layers dry out faster due to less rainfall and/or increased evapotranspiration driven by higher temperatures, the spectral reflection properties of bare soil change and the transport of latent heat into the fruiting zone is increased putting a higher temperature load on the fruit. Interactions between micro-organisms in the rhizosphere and the grapevine root system are poorly understood but respond to environmental factors (such as increased soil temperatures) and the plant material (rootstock for instance), respectively the cultivation system (for example bio-organic versus conventional). This adds to an extremely complex system to manage in terms of increased resilience, adaptation to and even mitigation of climate change. Nevertheless, taken as a whole, effects on the individual expressions of wines with a given origin, seem highly likely to become more apparent.

A population genetic study of Vitis vinifera L. subsp. sylvestris Gmelin based on 3.000 individuals from 20 countries

Until the 19th century, the wild form of cultivated grapevines (vitis vinifera l. subsp. sylvestris gmelin, v. sylvestris) was ubiquitous in many european and west asian regions. However, many factors like deforestation, the intensification of agriculture, or the introduction of several pests and pathogens decimated its presence in these growing sites, and natural populations are now mostly restricted to river-bank forests and creeks with specific soil and climate conditions. in fact, v. sylvestris is now considered an endangered subspecies that is protected by law in many european countries to prevent its loss.

Handbook of the charter of the universal holistic metaethics  sustainability 4.1c” for certification and warranty bio-métaétique 4.1c

Defined the new paradigm, the applied philosophy, the methodology, the algorithm of the “Charter for Universal Holistic MetaEthic Sustainability 4.1C17.18”, research has continued to define and write, an
handbook that should be:”Complete Universal Holistic MetaEthics 4.1C of descriptors” of the “Charter for Sustainability Universal Holistic MetaEthic 4.1C17.18” with basic and applicative indexing. In these activities and research we have involved over 3500 Italian and non-Italian people from the research world to simple but educated, enlightened and enlightening citizens and we have analyzed over 180000
entries concerning the descriptors above, which represent the basic “descriptors”.

Evaluation of “Accentuated cut edges” technique on the release of varietal thiols and their precursors in Shiraz and Sauvignon blanc wine production

Accentuated cut edges (ACE) is a novel grape crushing technique used sequentially after a conventional crusher to increase the extraction rate and content of polyphenolics, as shown for Pinot noir wine. This inspired us to apply the technique during Shiraz and Sauvignon blanc winemaking, primarily to assess its impact on the extraction of varietal thiol precursors in grape must/juice and formation of varietal thiols in the resultant wines