The performance of grapevines on identified terroirs in Stellenbosch, South Africa

Abstract

A terroir can be defined as a natural unit that is characterised by a specific agricultural potential, which is imparted by natural environmental features, and is reflected in the characteristics of the final product. Preliminary terroirs were defined for Stellenbosch for Sauvignon blanc and Cabernet Sauvignon using decision trees built on analyses of viticultural, oenological and environmental data measured on a network of plots over 7 seasons. This study was considered to be a preliminary approach to determine the validity of terroir studies for the South African wine industry.
It was expected that measurement of viticultural and oenological variables would serve to validate or refine the decision trees constructed with the first set of data and that the measurement of ecophysiological parameters on a separate network of reference plots would facilitate improved understanding of the grapevine x terroir interaction. Three plots of 10 vines each were therefore identified in selected commercial vineyards of Cabernet Sauvignon and Sauvignon blanc using remote sensing as a tool to identify homogenous plots where possible. These vineyards were representative of dominant terroir units that were identified for each cultivar. This network of experimental plots was monitored with respect to their ecophysiological response to the growing environment. This included dynamics of canopy development, vegetative growth, dynamics of berry growth and composition and wine character. Pre-dawn leaf water potential was determined at different stages during the growth season. The growing environment was characterised with respect to soil and climate by means of direct observations and measurements and interpolated values from the agroclimatic weather station network.
This paper will examine the results from three seasons for selected Sauvignon blanc and Cabernet Sauvignon vineyards from this network and compare these results to previous findings.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Victoria A CAREY (1), Valérie BONNARDOT (2), Zelmari COETZEE (3) & Laure DU COS DE ST BARTHELEMY (4)

(1) Lecturer and 3 Technical assistant, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, 7602 Matieland, South Africa
(2) Agroclimatological consultant, Bureau d’Études et de Recherches en Climatologie Appliquée à la Viticulture
(4) Masters student, SupAgro Montpellier and affiliated student, Stellenbosch University

Contact the author

Keywords

Sauvignon blanc, Cabernet Sauvignon, soil, ecophysiology, Stellenbosch

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Hydraulic redistribution and water movement mechanisms in grapevines

Plants have been shown to redistribute water between root sections and soil layers along a gradient of decreasing water availability. One benefit of this hydraulic redistribution is that water can be transported from roots in wet soil to others in dry soil, delaying the onset of water stress and increasing root longevity in dry environments. Grapevines are thought to redistribute water laterally across the trunk from wet to dry portions of the root system. However, it is unknown whether the phloem contributes to such water redistribution.

Climate change impacts: a multi-stress issue

With the aim of producing premium wines, it is admitted that moderate environmental stresses may contribute to the accumulation of compounds of interest in grapes. However the ongoing climate change, with the appearance of more limiting conditions of production is a major concern for the wine industry economic. Will it be possible to maintain the vineyards in place, to preserve the current grape varieties and how should we anticipate the adaptation measures to ensure the sustainability of vineyards? In this context, the question of the responses and adaptation of grapevine to abiotic stresses becomes a major scientific issue to tackle. An abiotic stress can be defined as the effect of a specific factor of the physico-chemical environment of the plants (temperature, availability of water and minerals, light, etc.) which reduces growth, and for a crop such as the vine, the yield, the composition of the fruits and the sustainability of the plants. Water stress is in many minds, but a systemic vision is essential for at least two reasons. The first reason is that in natural environments, a single factor is rarely limiting, and plants have to deal with a combination of constraints, as for example heat and drought, both in time and at a given time. The second reason is that plants, including grapevine, have central mechanisms of stress responses, as redox regulatory pathways, that play an important role in adaptation and survival. Here we will review the most recent studies dealing with this issue to provide a better understanding of the grapevine responses to a combination of environmental constraints and of the underlying regulatory pathways, which may be very helpful to design more adapted solutions to cope with climate change.

RED WINE AGING THROUGH 1H-NMR METABOLOMICS

Premium red wines are often aged in oak barrel. This widespread winemaking process is used, among others, to provide roundness and complexity to the wine. The study of wine evolution during barrel aging is crucial to better ensure control of wine quality.
¹H-NMR has already been proved to be an efficient tool to monitor winemaking process [1]. Indeed, it is a non-destructive technique, it requires a small amount of sample and a short time of analysis, yet it provides clues about several chemical families.

Island and coastal vineyards in the context of climate change

Aim: The notion of “terroir” enables the attribution of distinctive characteristics to wines from the same region. Climate change raises issues about viticulture, especially the growth of the vines and even more importantly the economic situation of actual wine-growing regions (Schultz and Jones 2010; Quénol 2014). Several studies have addressed the impacts of climate change on viticulture in

Characterization of intact glycoside aroma precursors of recovered minority Spanish red grape varieties by High-Resolution Mass Spectrometry

In Spain, the wide diversity of red grapevine varieties represents an advantage when choosing the most suitable one for cultivation based on different climatic conditions, without implying a loss of their enological potential.