Zoning influence in chromatic parameters in Monastrell grape

Abstract

Zoning analysis determine homogeneous areas principally from the point of view of the medium, giving as a result a map which cartographic units synthesize the relations between the edaphic factors; morphological factors of the soil and climatic factors. The combination of these types of parameters allows to obtain maps of suitability of the optimum areas for the crop of the vineyard. At present it has been delimited and characterized eight grape areas belonging to the D.O. Jumilla. The chosen plots has been: Varahonda, Cañada del Judío, Cañada de Albatana, El Carche, Rubializas, Agüeros, Cortijo del Agrio and Casa Vistalegre. 
The determined parameters are: Phenological parameters: Dates of sprouting, flowering, veraison, and harvest. Chemical parameters during maturation: total phenolic compounds, anthocyanins to pH 1 (extractable anthoc.) and anthocyanins to pH 3 (Total anthoc.), seed ripeness (MP) and index of cellular ripeness (IMC). 
As for the determination of chromatic parameters and of extractability, in the plot of Cortijo del agrio the biggest quantity of anthocyanins has been obtained on having finished the period of ripening, on the other hand the plot of Cañada del Judio is the one that has obtained the highest values of extractable polyphenols. In our study, for the IMC lower value has been obtained for the plot located in Cañada del Judio and the highest value for the plot of Cortijo del agrio. As for seed ripeness Rubializas and Cortijo del agrio are the plots that obtained the lowest values. 

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Rosario VILA LÓPEZ, Pascual ROMERO AZORÍN, José Ignacio FERNÁNDEZ FERNÁNDEZ, Adrián MARTÍNEZ CUTILLAS, Rocío Gil MUÑOZ

Viticultura Department, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), c/Mayor, s/n, 31050, La Alberca, Spain

Contact the author

Keywords

zoning, monastrell, chromatic parameters 

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

A stratified sampling approach to investigate the impact of climate and maturity on the aroma and phenolic composition of grenache grapes and wines within the poctefa area

Context and purpose of the study. Climate change is affecting wine production and induces a large variability in wine composition between vintages.

Effects of heat and water stress on grapevine health: primary and secondary metabolism

Grapevine resilience to climate change has become one of the most pressing topics in the Viticulture & Enology field. Vineyard health demands understanding the mechanisms that explain the direct and indirect interactions between environmental stressors. The current climate change scenario, where drought and heat-wave are more frequent and intense, strongly demands improving our knowledge of environmental stresses. During a heatwave, the ambient temperature rises above the plant’s average tolerance threshold and, generally, above 35 oC plant’s adaptation to heat stress is activated.

Development, validation and application of a fast UHPLC-HRMS method for the analysis of amino acids and biogenic amines in wines and musts.

The amino acids in grape juice are an important nitrogen source for yeast during alcoholic fermentation. Additionally, certain AAs are precursors to some of the volatile compounds found in wine and overall

Evaluation of intrinsic grape berry and cluster traits for postharvest withering kinetics prediction

To make some particular wine styles (e.g., Amarone), grapes are harvested and stored in dehydrating rooms before vinification, in a process called withering

A comprehensive ecological study of grapevine sensitivity to temperature; how terroir will shift under climate change

Fossil fuel combustion continues to drive increases in atmospheric carbon dioxide, consequently elevating the global annual mean temperature and specifically increasing the growing season temperatures in many of the world’s most important wine growing regions (IPCC 2014; Jones et al 2005). Grapes are sensitive to changes in growing season temperatures, and past models have shown a direct link between warming temperatures and earlier harvest dates (Cook and Wolkovich 2016). Globally, there have been shifts of 1-2 weeks for wine growing regions (Wolkovich et al 2017 and references within). The phenological shifts resulting from growing season temperature increases are documented internationally, and models predicting phenology using temperature are becoming more precise (Parker et al 2011).