Zoning influence in chromatic parameters in Monastrell grape

Abstract

Zoning analysis determine homogeneous areas principally from the point of view of the medium, giving as a result a map which cartographic units synthesize the relations between the edaphic factors; morphological factors of the soil and climatic factors. The combination of these types of parameters allows to obtain maps of suitability of the optimum areas for the crop of the vineyard. At present it has been delimited and characterized eight grape areas belonging to the D.O. Jumilla. The chosen plots has been: Varahonda, Cañada del Judío, Cañada de Albatana, El Carche, Rubializas, Agüeros, Cortijo del Agrio and Casa Vistalegre. 
The determined parameters are: Phenological parameters: Dates of sprouting, flowering, veraison, and harvest. Chemical parameters during maturation: total phenolic compounds, anthocyanins to pH 1 (extractable anthoc.) and anthocyanins to pH 3 (Total anthoc.), seed ripeness (MP) and index of cellular ripeness (IMC). 
As for the determination of chromatic parameters and of extractability, in the plot of Cortijo del agrio the biggest quantity of anthocyanins has been obtained on having finished the period of ripening, on the other hand the plot of Cañada del Judio is the one that has obtained the highest values of extractable polyphenols. In our study, for the IMC lower value has been obtained for the plot located in Cañada del Judio and the highest value for the plot of Cortijo del agrio. As for seed ripeness Rubializas and Cortijo del agrio are the plots that obtained the lowest values. 

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Rosario VILA LÓPEZ, Pascual ROMERO AZORÍN, José Ignacio FERNÁNDEZ FERNÁNDEZ, Adrián MARTÍNEZ CUTILLAS, Rocío Gil MUÑOZ

Viticultura Department, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), c/Mayor, s/n, 31050, La Alberca, Spain

Contact the author

Keywords

zoning, monastrell, chromatic parameters 

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Impact of microclimate on berry quality parameters of white Riesling (Vitis vinifera L.)

Knowledge has been accumulated on the impact of microclimate, in particular berry temperature and irradiation, for a wide range of red varieties. However, little research has been dedicated on the effects of the same factors on the quality of white grape varieties.

OPTIMISATION OF THE AROMATIC PROFILE OF UGNI BLANC WINE DISTILLATE THROUGH THE CONTROL OF ALCOHOLIC FERMENTATION

The online monitoring of fermentative aromas provides a better understanding of the effect of temperature on the synthesis and the loss of these molecules. During fermentation, gas and liquid phase concentrations as well as losses and total productions of volatile compounds can be followed with an unprecedented acquisition frequency of about one measurement per hour. Access to instantaneous production rates and total production balances for the various volatile compounds makes it possible to distinguish the impact of temperature on yeast production (biological effect) from the loss of aromatic molecules due to a physical effect³.

The dynamics of δ13C and δ18O in musts during berries development

Aim: Many processes or reactions that occur in plants involved isotopic discrimination. Water availability, for example, affects the isotopic ratio of carbon (δ13C) and oxygen (δ18O). In viticulture, δ13C is used in experiments related to water relations and irrigation in vineyards. δ18O is used much less but it could be a good complement to δ13C. The aim of this study was to generate knowledge on how these isotopic ratios, measured in musts, could help to better understand the water behavior of grape varieties. 

Remote sensing applications in viticulture: recent advances and new opportunities

Remote sensing applications in viticulture have been a research theme now for nearly two decades, becoming a valuable tool for vineyard management. Metrics produced using remotely sensed images of vineyards have yielded relationships with grape quality and yield that can help optimise vineyard performance

Implementation of a deep learning-based approach for detecting and localising automatically grapevine leaves with downy mildew symptoms

Grapevine downy mildew is a disease of foliage caused by Oomycete Plasmopara viticola an endoparasite that develops inside grapevine organs and can infect virtually every green organ. Downy mildew is one of the most destructive diseases in wine-growing regions, drastically reducing yield and fruit quality. Traditional manual disease detection relies on farm experts. Human field scouting has been widely used for monitoring the disease progress, however, is costly, laborious, subjective, and often imprecise.