Terroir 2008 banner
IVES 9 IVES Conference Series 9 Fractal analysis as a tool for delimiting guarantee of quality areas

Fractal analysis as a tool for delimiting guarantee of quality areas

Abstract

The pioneering work of Mandelbrot in the 70’s for building the fractal theory lead rapidly to many interesting applications in different fields such as earth sciences and economy. Even if agronomy and environment sciences have not yet much explored this theoretical tool they could allow a lot of applications.
This paper gives two concrete examples of application. The first one shows how the fractal analysis can be used to define a geographical area such as AOC area of Maine cider brandy and Pommeau du Maine AOC Area. With the second one we can see how, taken among many others, the fractal dimension is a good theoretical tool for characterising a vineyard landscape.

Related articles…

Impact of nitrogen addition timing on the synthesis of fermentative aromas in alcoholic fermentation

Among the different compounds present in the must, nitrogen is an essential nutrient for the management of the fermentation kinetics but it also plays an important role in the synthesis of fermentative aromas.

EXTRACTIBLE COMPOUNDS FROM MICROAGGLOMERATED CORK STOPPERS

After bottling, the wine continues to evolve during storage. The choice of the stopper is an important factor in this evolution. In addition to the oxygen permeability of the closure, the migration of stopper compounds into the wine can also have an impact on the wine organoleptic properties. Many studies have shown that transfers of volatile compounds from the stoppers into the wine can happen depending on the type of closure used (1). Moreover, when cork-made stoppers are used, the migration of phenolic compounds from the stopper into the wine can also occur (2, 3).

Updating the Winkler index: An analysis of Cabernet sauvignon in Napa Valley’s varied and changing climate

This study aims to create an updated, agile viticultural climate index (similar to the Winkler Index) by performing in-depth analyses of current and historical data from industry partners in several major winegrowing regions. The Winkler Index was developed in the early twentieth century based on analysis of various grape-growing regions in California. The index uses heat accumulation (i.e. Growing Degree Days) throughout the growing season to determine which grape varieties are best suited to each region. As viticultural regions are increasingly subject to the complexity and uncertainty of a changing climate, a more rigorous, agile model is needed to aid grape growers in determining which cultivars to plant where. For the first phase of this study, 21 industry partners throughout Napa Valley shared historical phenology, harvest, viticultural practice, and weather data related to their Cabernet sauvignon vineyard blocks. To complement this data, berry samples were collected throughout the 2021 growing season from 50 vineyard blocks located throughout 16 American Viticultural Areas that were then analyzed for basic berry chemistry and phenolics. These blocks have been mapped using a Geographic Information System (GIS), enabling analysis of altitude, vineyard row orientation, slope, and remotely sensed climate data. Sampling sites were also chosen based on their proximity to a weather station. By analyzing historical data from industry partners and data specifically collected for this study, it is possible to identify key parameters for further analysis. Initial results indicate extreme variability at a high spatial resolution not currently accounted for in modern viticultural climate indices and suggest that viticultural practices play a major role. Using the structure of data collection and analyses developed for the first phase, this project will soon be expanded to other wine regions globally, while continuing data collection in Napa Valley.

Impact of temperature and solar radiation on grape composition variability in the Saint-Emilion winegrowing area 

Grape composition is strongly influenced by climate conditions. Their expected modifications in near future, notably because of increased temperatures, could significantly modify the biochemical composition of berries at harvest, and thus wine typicity and quality. Elevated temperatures favor sugar accumulation in grapes, enhance malic acid degradation and modify the amino acid content. They also reduce significantly anthocyanin accumulation in Merlot, leading to the imbalance between anthocyanins and sugars, while no significant effects on final anthocyanin levels were reported in Tempranillo[1] and finally affect aromas or aroma precursors.

Terroir e DOC: riflessi produttivi e commercial

Da dove scaturisce tutto l’interesse attuale per il terroir? Si provi, per dare risposta a questo quesito, ad immaginare il vino avulso dalla sua dimensione territoriale. Cosa si otterrebbe? Un vino bianco, un vino rosso o quant’altro, ma comunque un prodotto privo di conno­tazione geografica, di premesse storiche, di radici tradizionali, di potere evocativo, di iden­tità e di personalità.