Terroir 2008 banner
IVES 9 IVES Conference Series 9 Fractal analysis as a tool for delimiting guarantee of quality areas

Fractal analysis as a tool for delimiting guarantee of quality areas

Abstract

The pioneering work of Mandelbrot in the 70’s for building the fractal theory lead rapidly to many interesting applications in different fields such as earth sciences and economy. Even if agronomy and environment sciences have not yet much explored this theoretical tool they could allow a lot of applications.
This paper gives two concrete examples of application. The first one shows how the fractal analysis can be used to define a geographical area such as AOC area of Maine cider brandy and Pommeau du Maine AOC Area. With the second one we can see how, taken among many others, the fractal dimension is a good theoretical tool for characterising a vineyard landscape.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Alain JACQUET (1), Stéphanie OULES-BERTON (2) and Jean DUCHESNE (3)

(1) Institut National de l’Origine et de la Qualité (INAO)
(2) Confédération Viticole du Val de Loire (CVVL)
(3) Institut National d’Horticulture (INH)

Contact the author

Keywords

paysage, appellation d’origine, fractale

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Grape ripening and wine style: synchronized evolution of aromatic composition of shiraz wines from hot and temperate climates of Australia

Grape ripening is a process driven by the interactions between grapevine genotypes and environmental factors. Grape composition is largely responsible for the production

Metabolomic profile of red non-V. vinifera genotypes

Vitis vinifera L. is the most widely cultivated Vitis species which includes numerous cultivars. Owing to their superior quality of grapes, these cultivars were long considered the only suitable for the production of fine wines. However, the lack of resistance genes in V. vinifera against major grapevine pathogens, requires for its cultivation frequent spraying with large amount of fungicides. Thus, the search for alternative and more sustainable methods to control the grapevine pathogens have brought the breeders to focus their attention on other Vitis species. In fact, wild Vitis genotypes present multiple resistance traits against pathogens, such as powdery mildew, downy mildew and phylloxera.

Biotic and abiotic factors affecting physiological aspects underlying vegetative vigour in two commercial grapevine varieties

Grapevine vigour, defined as the propensity to assimilate, store and/or use non-structural sugars for allowing fast growth of shoots and producing large canopies[1], is crucial to optimize vineyard management. Recently, a model has been proposed for predicting the vigor of young grapevines through the measurement of the vegetative growth and physiological parameters, such as water status and gas exchange[2]. Our objectives were (1) to explore the influence of the association of two grapevine varieties (Tempranillo and Cabernet Sauvignon, grafted onto R110 rootstocks) with arbuscular mycorrhizal fungi (AMF) on the vegetative vigour of young plants; and (2) to assess the effect of environmental factors linked to climate change on the vegetative vigour of Cabernet Sauvignon.

Evolution of the appellation of origin concept in the vineyards of Australia

Australia is the seventh largest producer of wine and crushed 1.42 million tonnes of wine grapes in the 2001 vintage.

REDUCING NITROGEN FERTILIZATION ALTERS PHENOLIC PROFILES OF VITIS VINIFERA L. CV. CABERNET GERNISCHT WINE OF YANTAI, CHINA

Nitrogen (N) fertilizer is important for grape growth and the quality of wine. It is essential to address the mismatch between N application and wine composition. Cabernet Gernischt (Vitis vinifera L.), as one of the main wine-grape cultivars in China, was introduced to Yantai wine region in 1892. This grape cultivar is traditionally used for quality dry red wine with fruit, spices aroma, ruby red and full-bodied wines. In order to regulate vine growth and improve grape and wine quality, Cabernet Gernischt grapevines were subjected to decreased levels of N treatments, compared to normal N supply treatment, during grape growing seasons of 2019 and 2020.