Terroir 2008 banner
IVES 9 IVES Conference Series 9 Fractal analysis as a tool for delimiting guarantee of quality areas

Fractal analysis as a tool for delimiting guarantee of quality areas

Abstract

The pioneering work of Mandelbrot in the 70’s for building the fractal theory lead rapidly to many interesting applications in different fields such as earth sciences and economy. Even if agronomy and environment sciences have not yet much explored this theoretical tool they could allow a lot of applications.
This paper gives two concrete examples of application. The first one shows how the fractal analysis can be used to define a geographical area such as AOC area of Maine cider brandy and Pommeau du Maine AOC Area. With the second one we can see how, taken among many others, the fractal dimension is a good theoretical tool for characterising a vineyard landscape.

Related articles…

‘Cabernet Sauvignon’ (Vitis vinifera L.) berry skin flavonol and anthocyanin composition is affected by trellis systems and applied water amounts

Trellis systems are selected in wine grape vineyards to mainly maximize vineyard yield and maintain berry quality. This study was conducted in 2020 and 2021 to evaluate six commonly utilized trellis systems including a vertical shoot positioning (VSP), two relaxed VSPs (VSP60 and VSP80), a single high wire (SH), a high quadrilateral (HQ), and a guyot (GY), combined with three levels of irrigation regimes based on different crop evapotranspiration (ETc) replacements, including a 25% ETc, 50% ETc, and 100% ETc. The results indicated SH yielded the most fruits and accumulated the most total soluble solids (TSS) at harvest in 2020, however, it showed the lowest TSS in the second season. In 2020, SH and HQ showed higher concentrations in most of the anthocyanin derivatives compared to the VSPs. Similar comparisons were noticed in 2021 as well. SH and HQ also accumulated more flavonols in both years compared to other trellis systems. Overall, this study provides information on the efficacy of trellis systems on grapevine yield and berry flavonoid accumulation in a currently warming climate.

Effect of two water deficit regimes on the agronomic response of 12 grapevine varieties cultivated in a semi-arid climate

The Mediterranean basin is one of the most vulnerable regions to Climate Change effects. According to unanimous forecasts, the vineyards of Castilla-La Mancha will be among the most adversely affected by rising temperatures and water scarcity during the vine’s vegetative period. One potential strategy to mitigate the negative impacts of these changes involves the identification of grapevine varieties with superior water use efficiency, while ensuring satisfactory yields and grape quality.

Optimization and validation of a fully automated HS-SPME method for determination of VCCs and its application in wines submitted to accelerated ageing

Wine aroma is a complex gaseous mixture composed of various compounds; some of these molecules derive directly from the grapes while most of them are released and synthetized during fermentation or are due to ageing reactions

Revisión de estudios sobre suelos vitícolas de las tierras del Jerez

Dada la importancia de los suelos y de los substratos geológicos en la zonificación vitivinícola, los autores realizan una revisión de estudios sobre las formaciones más importantes en la D.O. Jerez-Xérès-Sherry y Manzanilla-Sanlúcar de Barrameda.

Regenerative agricultural approaches to improve ecosystem services in Mediterranean vineyards

REVINE is a 3 year European projected funded by PRIMA programme which proposes the adoption of regenerative agriculture practices with an innovative and original perspective, in order to improve the resilience of vineyards to climate change in the Mediterranean area. The potential for innovation lies in developing and combining new approaches that make agriculture more environmentally sustainable and enable a circular economy capable of improving farmers’ incomes. Primarily REVINE aims to improve soil health and biodiversity by promoting the multiplication of soil saprophytic microorganisms and the presence of useful microorganisms linked to the life cycle of the plant, such as rhizobacteria (PGPR) and fungi (PGPF) that promote plant growth which, in addition to increasing plant performance, increase tolerance to biotic and abiotic stresses.