Terroir 2008 banner
IVES 9 IVES Conference Series 9 Historical terraced vineyards – heritage and nature conservation strategies

Historical terraced vineyards – heritage and nature conservation strategies

Abstract

Historical terrace vineyards are simultaneously impressive documents of the human inclination to design, sites for the production of high quality wines and habitats for a rich variety of flora and fauna. In the past they have often also been the setting for questionable developments. Radical land consolidation processes rendered these sites high yield utilisation areas, but also resulted in their conversion to plain monocultures. Where the rationalisation of terrace vineyards was not profitable, these were often abandoned entirely. Only a modest proportion of the vineyards have managed to retain their historical character. It is necessary to develop strategies for the sustainable use of these sites in order to secure first and foremost their very existence, but also their historical, social, economic and ecological worth.
The aim of the transdisciplinary ‘HISTORISCHE WEINBERGE’ project is to heighten both users’ and conservationists’ awareness of the values associated with these landscapes, so as to counter an unsustainable intensification of land use, or alternatively the total abandonment of these areas. A guideline for the conservation of the vineyards is being developed in cooperation with winegrowers and representatives from politics, nature protection and heritage conservation. The guideline will be developed on the basis of criteria corresponding to both use and protection needs. This process seeks to harmonise the interests of the various actors and to optimise the path towards an integrated approach to the tending of the cultural landscape. The knowledge and the perspectives of the stakeholders are being continuously assessed through interviews, working groups and local events so as to ensure the practical relevance of the project.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Claude PETIT, Franz HÖCHT, Werner KONOLD

Albert-Ludwigs-Universität Freiburg i. Brsg., Institut für Landespflege, Tennenbacherstraße 4, D-79106 Freiburg

Contact the author

Keywords

vignoble historique, conservation du patrimoine, genèse de paysage culturel, terrasses, transdisciplinarité

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Assessment of alternative sweetening methods for dealcoholized wine

In recent years, there has been an increase in demand for non-alcoholic wine with an ethanol content of less than 0.5% v/v. The dealcoholization process can take place by various methods, such as vacuum distillation or membrane technologies like osmotic distillation. Compared to distillation, membrane systems often require multiple passes or a combination of multiple separation methods. Complete or almost complete removal of ethanol significantly changes the sensory characteristics of wine.

Impact of geographical location on the phenolic profile of minority varieties grown in Spain. II: red grapevines

Because terroir and cultivar are drivers of wine quality, is essential to investigate theirs effects on polyphenolic profile before promoting the implantation of a red minority variety in a specific area. This work, included in MINORVIN project, focuses in the polyphenolic profile of 7 red grapevines minority varieties of Vitis vinifera L. (Morate, Sanguina, Santafe, Terriza Tinta Jeromo Tortozona Tinta) and Tempranillo) from six typical viticulture Spanish areas: Aragón (A1), Cataluña (A2), Castilla la Mancha (A3), Castilla –León (A4), Madrid (A5) and Navarra (A6) of 2020 season. Polyphenolic substances were extracted from grapes. 35 compounds were identified and quantified (mg subtance/kg fresh berry) by HPLC and grouped in anthocyanins (ANT) flavanols (FLAVA), flavonols (FLAVO), hydroxycinnamic (AH), benzoic (BA) acids and stilbenes (ST). Antioxidant activity (AA, mmol TE /g fresh berry) was determined by DPPH method. The results were submitted to a two-way ANOVA to investigate the influence of variety, area and their interaction for each polyphenolic family and cluster analysis was used to construct hierarchical dendrograms, searching the natural groupings among the samples. Sanguina (A3) had the most of total polyphenols while Tempranillo (A5) those of ANT. Sanguina (A2) and (A3) reached the highest values of FLAVO, FLAVA and AA. These two last samples had also the maximum of AA. The effect cultivar and area were significant for all polyphenolic families analyzed. A high variability due to variety (>50%) was observed in FLAVA and the maximum value of variability due to growing area was detected in AA (86.41%), ANT and FLAVO (51%); the interaction variety*zone was significant only for ANT, FLAVO, EST and AA. Finally, dendrograms presented five cluster: i) Sanguina (A2); ii) Sanguina (A3); iii) Tempranillo (A5); iv) Tempranillo (A3); Terriza (A3,A5), Morate (A5,A6); v) Santafé (A1,A6); Tortozona tinta (A1,A3,A6); Tinta Jeromo (A3,A4).

Viticultural practices: past, present and future

Practices in viticulture have greatly evolved in the last five decades. There were three objectives: improvement in the quality of the products, reduction in the production costs through mechanization

Teasing apart terroir: the influence of management style on native yeast communities within Oregon wineries and vineyards

Newer sequencing technologies have allowed for the addition of microbes to the story of terroir. The same environmental factors that influence the phenotypic expression of a crop also shape the composition of the microbial communities found on that crop. For fermented goods, such as wine, that microbial community ultimately influences the organoleptic properties of the final product that is delivered to customers. Recent studies have begun to study the biogeography of wine-associated microbes within different growing regions, finding that communities are distinct across landscapes. Despite this new knowledge, there are still many questions about what factors drive these differences. Our goal was to quantify differences in yeast communities due to management style between seven pairs of conventional and biodynamic vineyards (14 in total) throughout Oregon, USA. We wanted to answer the following questions: 1) are yeast communities distinct between biodynamic vineyards and conventional vineyards? 2) are these differences consistent across a large geographic region? 3) can differences in yeast communities be tied to differences in metabolite profiles of the bottled wine? To collect our data we took soil, bark, leaf, and grape samples from within each vineyard from five different vines of pinot noir. We also collected must and a 10º brix sample from each winery. Using these samples, we performed 18S amplicon sequencing to identify the yeast present. We then used metabolomics to characterize the organoleptic compounds present in the bottled wine from the blocks the year that we sampled. We are actively in the process of analysing our data from this study.