Terroir 2008 banner
IVES 9 IVES Conference Series 9 Historical terraced vineyards – heritage and nature conservation strategies

Historical terraced vineyards – heritage and nature conservation strategies

Abstract

Historical terrace vineyards are simultaneously impressive documents of the human inclination to design, sites for the production of high quality wines and habitats for a rich variety of flora and fauna. In the past they have often also been the setting for questionable developments. Radical land consolidation processes rendered these sites high yield utilisation areas, but also resulted in their conversion to plain monocultures. Where the rationalisation of terrace vineyards was not profitable, these were often abandoned entirely. Only a modest proportion of the vineyards have managed to retain their historical character. It is necessary to develop strategies for the sustainable use of these sites in order to secure first and foremost their very existence, but also their historical, social, economic and ecological worth.
The aim of the transdisciplinary ‘HISTORISCHE WEINBERGE’ project is to heighten both users’ and conservationists’ awareness of the values associated with these landscapes, so as to counter an unsustainable intensification of land use, or alternatively the total abandonment of these areas. A guideline for the conservation of the vineyards is being developed in cooperation with winegrowers and representatives from politics, nature protection and heritage conservation. The guideline will be developed on the basis of criteria corresponding to both use and protection needs. This process seeks to harmonise the interests of the various actors and to optimise the path towards an integrated approach to the tending of the cultural landscape. The knowledge and the perspectives of the stakeholders are being continuously assessed through interviews, working groups and local events so as to ensure the practical relevance of the project.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Claude PETIT, Franz HÖCHT, Werner KONOLD

Albert-Ludwigs-Universität Freiburg i. Brsg., Institut für Landespflege, Tennenbacherstraße 4, D-79106 Freiburg

Contact the author

Keywords

vignoble historique, conservation du patrimoine, genèse de paysage culturel, terrasses, transdisciplinarité

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Evaluation of six red grapevine cultivars inoculated with Neofusicoccum parvum in a “terroir” of La Mancha wine región (Spain)

Aim: Among Botryosphaeriaceae species associated with Botryosphaeria dieback of grapevines, Neofusicoccum parvum is one of the most virulent and fastest wood-colonizing fungi. This study aimed to evaluate the susceptibility of six red grapevine cultivars (“Bobal”, “Monastrell”, “Garnacha Tinta”, “Moravia Agria”, “Tinto Velasco” and “Moribel” to N. parvum, under field conditions.

The wine microbial ecosystem: Molecular interactions between yeast species and evidence for higher order interactions

Fermenting grape juice represents one of the oldest continuously maintained anthropogenic microbial environments and supports a well-mapped microbial ecosystem. Several yeast and bacterial species dominate this ecosystem, and some of these species are part of the globally most studied and best understood individual organisms. Detailed physiological, cellular and molecular data have been generated on these individual species and have helped elucidate complex evolutionary processes such as the domestication of wine yeast strains of the species Saccharomyces cerevisiae. These data support the notion that the wine making environment represents an ecological niche of significant evolutionary relevance. Taken together, the data suggest that the wine fermentation ecosystem is an excellent model to study fundamental questions about the working of microbial ecosystems and on the impact of biotic selection pressures on microbial ecosystem functioning. Indeed, and although well mapped, the rules and molecular mechanisms that govern the interactions between microbial species within this, and other, ecosystems remain underexplored. Here we present data derived from several converging approaches, including microbiome data of spontaneous fermentations, the population dynamics of constructed consortia, the application of biotic selection pressures in directed laboratory evolution, and the physiological and molecular analysis of pairwise and higher order interactions between yeast species. The data reveal the importance of cell wall-related elements in interspecies interactions and in evolutionary adaptation and suggest that predictive modelling and biotechnological control of the wine ecosystem during fermentation are promising strategies for wine making in future.

Screening of different commercial wine yeast strains: the effect of sugar and copper additions on fermentation and volatile acidity production

The aims of this study were to examine the effect of high sugar concentrations of must and copper residues on different commercial wine yeasts. Copper originating from pesticides has been known to inhibit yeast, but it’s effect on fermentation performance and VA production of different yeast strains had not been investigated in detail.

Impact of non-fruity compounds on red wines fruity aromatic expression: the role of higher alcohols

A part, at least, of the fruity aroma of red wines is the consequence of perceptive interactions between various aromatic compounds, particularly ethyl esters and acetates, which may contribute to the perception of fruity aromas, specifically thanks to synergistic effects.1,2 The question of the indirect impact of non-fruity compounds on this particular aromatic expression has not yet been widely investigated. Among these compounds higher alcohols (HA) represent the main group, from a quantitative standpoint, of volatiles in many alcoholic beverages. Moreover, some bibliographic data suggested their contribution to the aromatic complexity by either increasing or masking flavors of wine, depending of their concentrations.

Guard cell metabolism – A key for regulating drought resilience?

In view of increasing drought frequencies due to climate change, enhancing grapevine resilience to water scarcity has become vital for sustainable viticulture.