Terroir 2008 banner
IVES 9 IVES Conference Series 9 Historical terraced vineyards – heritage and nature conservation strategies

Historical terraced vineyards – heritage and nature conservation strategies

Abstract

Historical terrace vineyards are simultaneously impressive documents of the human inclination to design, sites for the production of high quality wines and habitats for a rich variety of flora and fauna. In the past they have often also been the setting for questionable developments. Radical land consolidation processes rendered these sites high yield utilisation areas, but also resulted in their conversion to plain monocultures. Where the rationalisation of terrace vineyards was not profitable, these were often abandoned entirely. Only a modest proportion of the vineyards have managed to retain their historical character. It is necessary to develop strategies for the sustainable use of these sites in order to secure first and foremost their very existence, but also their historical, social, economic and ecological worth.
The aim of the transdisciplinary ‘HISTORISCHE WEINBERGE’ project is to heighten both users’ and conservationists’ awareness of the values associated with these landscapes, so as to counter an unsustainable intensification of land use, or alternatively the total abandonment of these areas. A guideline for the conservation of the vineyards is being developed in cooperation with winegrowers and representatives from politics, nature protection and heritage conservation. The guideline will be developed on the basis of criteria corresponding to both use and protection needs. This process seeks to harmonise the interests of the various actors and to optimise the path towards an integrated approach to the tending of the cultural landscape. The knowledge and the perspectives of the stakeholders are being continuously assessed through interviews, working groups and local events so as to ensure the practical relevance of the project.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Claude PETIT, Franz HÖCHT, Werner KONOLD

Albert-Ludwigs-Universität Freiburg i. Brsg., Institut für Landespflege, Tennenbacherstraße 4, D-79106 Freiburg

Contact the author

Keywords

vignoble historique, conservation du patrimoine, genèse de paysage culturel, terrasses, transdisciplinarité

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Influence of the vineyard’s surrounding vegetation on the phenolic potential of Vitis vinifera L. cv Tempranillo grapes

Wine industry has to develop new strategies to reduce the negative impact of global climate change in wine quality while trying to mitigate its own contribution to this climate change. The term “ecosystem services”, whose use has been recently increasing, refers to the benefits that human beings can obtain from the interactions between the different living beings that coexist in an environment or system. The management of biodiversity in the vineyard has a positive impact on this crop. It has recently been reported that practices such as plant cover can reduce the occurrence of pests, increase pollination of the vine, improve plant performance1 and affect the phenolic content of grapes.2

Does spotted lanternfly phloem-feeding have downstream effects on wine volatiles? Preliminary insights into compositional shifts

The Spotted lanternfly (SLF), first detected in the U.S. in 2014, is an invasive phloem-feeding planthopper that poses a growing threat to grape and wine production in the U.S. In Pennsylvania, where it was first detected, reductions in grapevine production and fruit quality have been reported by commercial growers. Recent advances have begun to elucidate how SLF affects grapevine physiology and resource allocation, but no research has identified how SLF affects wine chemical composition and quality. Documented reductions in fruit sugar allocation due to heavy SLF phloem-feeding may have downstream effects on wine fermentation dynamics. Additionally, secondary metabolic responses stimulated by SLF may also influence berry chemical composition. The present study investigated SLF-mediated effects on wine composition through analysis of the volatile composition of wines produced from white- and red-fruited varieties of different Vitis parentage (e.g., Vitis vinifera vs. interspecific hybrids) following prolonged exposure to adult SLF phloem-feeding.

Comparative QTL mapping of phenology traits in three cross populations of grapevine

Long-term studies on grapevine phenology have clearly demonstrated that global warming is affecting phenological events, leading to an anticipation in their timing, and negatively impacting grape yield and berry quality. Therefore, dissecting the genetic determinants involved in the plant regulation of the phenological stages of budburst, flowering, veraison and ripening can improve our knowledge of the underlying mechanisms and support plant breeding programs and the advancement of vineyard management strategies.
We report here the results of a QTL mapping experiment conducted on three segregating populations obtained from the crossing of ‘Cabernet Sauvignon’ and ‘Corvina’, ‘Corvina’ and the hybrid ‘Solaris’ and ‘Rhine Riesling’ and ‘Cabernet Sauvignon’.

Organic mulches improve vine vigour, yield and physiological response in a semi-arid region

Recycled organic mulch within the row in vineyard floor management has become an interesting ecological strategy to adapt the crop to climate change consequences in semi-arid regions.
This study aimed to assess the impact of three recycled organic mulches [straw (STR), grape pruning debris (GPD), and spent mushroom compost (SMC)] and two conventional soil management practices [herbicide (HERB) and under-row tillage (TILL)] on vegetative vigour (NDVI), production (kg/plant), and physiological parameters (δ13C in grapes and leaf gas exchange during four grapevine phenology stages). Additionally, temperature and water soil parameters were collected at three soil depths. Data was collected during the 2021 and 2022 grapevine growing seasons in La Rioja, Spain.

Vineyard’s ozone application to induce secondary metabolites accumulation in grapes and wine

In viticulture sector to find new tools for pest management has become an urgent necessity. Hence, grapevines cultivation has high production rate demand and to meet the intensive market request, a massive use of pesticides is often required. In addition to the environmental problems associated with large use of chemicals, there is an increasing number of consumers which are asking for