Terroir 2008 banner
IVES 9 IVES Conference Series 9 VITOUR – The European World Heritage Vineyards

VITOUR – The European World Heritage Vineyards

Abstract

UNESCO World Heritage as the link, Europe as the area covered. VITOUR network is born on this idea, on Loire Valley Mission and InterLoire’s initiative. It gathers vineyards inscribed on UNESCO World Heritage List.
The economic, tourist, environmental and heritage issues form the bond for this particularly emblematic partnership of wine-producing professionals and managers of the listed sites. Supported by the European Union (INTERREG IIIC), seven sites are working together on the sustainable development of their outstanding landscapes and promoting their discovery through innovative tourism actions.
These sites share many common features: proximity to a river, major component of vine; the “terroir” and know-how of the vine-growers helpful to make understand the reality of the cultural landscape; the need to involve local authorities, heritage managers and tourism organisations to promote these areas in the best possible way. All these UNESCO World Heritage sites share the commitment to develop policies based on the outstanding qualities of their superb landscapes.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Myriam LAIDET and Katalin TÓTH

Management Team of the VITOUR Programme
Mission Val de Loire – Patrimoine Mondial
81, rue Colbert – BP 4322, 37043 TOURS CEDEX 1, France

Contact the author

Keywords

Pole of competitiveness, partnership of excellence, wine landscapes, oenotourism, heritage, culture

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Relationship between soil and grapevine variety in the wineyard of Jura: example for the “Trousseau” variety from the “Terroir” of Montigny-Lès-Arsures (France)

Seven plots located in the commune of Montigny-lès-Arsures (Jura, 39), planted with grapevine varieties Trousseau and Savagnin, were chosen for a study of soil pits and a distribution of major and trace chemical elements in soils and wines. It was shown that the mineral matrix of the soil reflects the geological substratum and the sub-surface alteration process, while the organic soil matrix depends on agro-viticultural practices.

Have the best Bordeaux wines been drunk already? A reflection on the transient nature of terroir, using case study Australia

Aim:  The aim of this paper is to demonstrate that the meaning of terroir should be regarded as transient. This is because climate, one of the principal components of terroir, is changing with time, and can no longer be assumed to be constant with fluctuations about a mean. This is due to the climate crisis.

Impact of tomato black ring virus (TBRV) on quantitative and qualitative feature of Vitis vinifera L. Cv. Merlot and Cabernet franc

Fifteen nepoviruses are able to induce fanleaf degeneration in grapes. Grapevine fanleaf virus (GFLV) is the main causal agent of this disease

Terroir and sustainability: an analysis of brazilian vineyards from a territorial perspective

In the concept of sustainable viticulture proposed by the OIV, it can be noted that enhancing terroir is also one measure of sustainability. Thus, the territorial approach may offer an interesting viewpoint from which to consider this issue in a multi-perspective way.

Characterization of variety-specific changes in bulk stomatal conductance in response to changes in atmospheric demand and drought stress

In wine growing regions around the world, climate change has the potential to affect vine transpiration and overall vineyard water use due to related changes in atmospheric demand and soil water deficits. Grapevines control their transpiration in response to a changing environment by regulating conductance of water through the soil-plant-atmosphere continuum. Most vineyard water use models currently estimate vine transpiration by applying generic crop coefficients to estimates of reference evapotranspiration, but this does not account for changes in vine conductance associated with water stress, nor differences thought to exist between varieties. The response of bulk stomatal conductance to daily weather variability and seasonal drought stress was studied on Cabernet-Sauvignon, Merlot, Tempranillo, Ugni blanc, and Semillon vines in a non-irrigated vineyard in Bordeaux France. Whole vine sap flow, temperature and humidity in the vine canopy, and net radiation absorbed by the vine canopy were measured on 15-minute intervals from early July through mid-September 2020, together with periodic measurement of leaf area, canopy porosity, and predawn leaf water potential. From this data, bulk stomatal conductance was calculated on 15-minute intervals, and multiple regression analysis was performed to identify key variables and their relative effect on conductance. Attention was focused on addressing multicollinearity and time-dependency in the explanatory variables and developing regression models that were readily interpretable. Variability of vapor pressure deficit over the day, and predawn water potential over the season explained much of the variability in conductance, with relative differences in response coefficients observed across the five varieties. By characterizing this conductance response, the dynamics of vine transpiration can be better parameterized in vineyard water use modeling of current and future climate scenarios.