Terroir 2008 banner
IVES 9 IVES Conference Series 9 VITOUR – The European World Heritage Vineyards

VITOUR – The European World Heritage Vineyards

Abstract

UNESCO World Heritage as the link, Europe as the area covered. VITOUR network is born on this idea, on Loire Valley Mission and InterLoire’s initiative. It gathers vineyards inscribed on UNESCO World Heritage List.
The economic, tourist, environmental and heritage issues form the bond for this particularly emblematic partnership of wine-producing professionals and managers of the listed sites. Supported by the European Union (INTERREG IIIC), seven sites are working together on the sustainable development of their outstanding landscapes and promoting their discovery through innovative tourism actions.
These sites share many common features: proximity to a river, major component of vine; the “terroir” and know-how of the vine-growers helpful to make understand the reality of the cultural landscape; the need to involve local authorities, heritage managers and tourism organisations to promote these areas in the best possible way. All these UNESCO World Heritage sites share the commitment to develop policies based on the outstanding qualities of their superb landscapes.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Myriam LAIDET and Katalin TÓTH

Management Team of the VITOUR Programme
Mission Val de Loire – Patrimoine Mondial
81, rue Colbert – BP 4322, 37043 TOURS CEDEX 1, France

Contact the author

Keywords

Pole of competitiveness, partnership of excellence, wine landscapes, oenotourism, heritage, culture

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Effect of foliar treatment of methyl jasmonate and nanoparticles doped with methyl jasmonate on Monastrell grape skin cell wall

The use of elicitors to promote the biosynthesis of secondary metabolites in grapes has been tackled in several reports, however its study linked to nanotechnology is less developed.

Impact of water stress on the phenolic composition of cv. Merlot grapes, in a typical terroir of the La Mancha region (Spain)

The study was carried out in 2006 with Merlot grapes from vines grown using the trellis system, where four treatments were compared with different levels of water stress.

The importance of soil and geology in tasting terroir; a case history from the Willamette valley, Oregon

Wines differ from each other based on seven different factors: the type of grape; the bedrock geology and resulting soils; the climate; the soil hydrology; physiography of the site; the winemaker and the vineyard management techniques. The first five of these factors make up what the French call terroir, “the taste of the place”.

Mapping intra-plot topsoil diversity of Burgundy vineyards (Aloxe-Corton, France) from very high spatial resolution (VHSR) images

In this work, we present a method based on very high spatial resolution (VHSR) aerial images acquired in the visible domain and that map soil surface diversity at the hillslope

Drought affects vineyard soil microbiome: approach to select micro-organisms adapted to drought

Climate transition with frequent heat waves and long drought periods threatens grapevine productivity and wine quality in the Mediterranean regions. Microorganisms are known to contribute to plant fitness and to stimulate plant resilience against biotic and abiotic factors.
In this work, it was assessed the impact of long-term drought on soil microbiome associated to grapevine in open field in Alentejo, renowned Portuguese wine region.
Soil and plant tissues of drought tolerant Syrah cultivar exposed to three irrigation levels (100%- FI, 50%-DI ETc; rain-fed–NI) for 5 years were sampled for two years (2022-2023). Metabarcoding analysis of soil bacteria (16S V4 rRNA) and fungi (ITS sub-region) were integrated with soil physiochemical properties and leaves´ physiological data. Pre-dawn leaf water potential and stomatal conductance confirmed the imposed drought scenarios. Even though, α- and β-diversity of prokaryotic and eukaryotic microbial communities differed more by season than water availability, samples clustered according to soil water content and pH (p<0.05). Fungal communities show higher differences in the structure across treatments than bacteria. In 2023, 16 bacterial against 61 fungal ASVs were significatively different in abundance between NI and FI. Beijerinckiaceae, Bradyrhizobiaceae (Alphaproteobacteria) and Nocardioidaceae, Streptomycetaceae (Actinobacteria) families resulted to be significatively more abundant in NI, while Ascomycota, Basidyomicota and Mortierellomycota are the most important fungal phyla in NI. With culturomics data, this study aims to gather insights into how soil microbiome is remodelled under drought and contribute to select bacterial and fungal taxa with potential to mitigate drought stress in vineyards.