Terroir 2008 banner
IVES 9 IVES Conference Series 9 VITOUR – The European World Heritage Vineyards

VITOUR – The European World Heritage Vineyards

Abstract

UNESCO World Heritage as the link, Europe as the area covered. VITOUR network is born on this idea, on Loire Valley Mission and InterLoire’s initiative. It gathers vineyards inscribed on UNESCO World Heritage List.
The economic, tourist, environmental and heritage issues form the bond for this particularly emblematic partnership of wine-producing professionals and managers of the listed sites. Supported by the European Union (INTERREG IIIC), seven sites are working together on the sustainable development of their outstanding landscapes and promoting their discovery through innovative tourism actions.
These sites share many common features: proximity to a river, major component of vine; the “terroir” and know-how of the vine-growers helpful to make understand the reality of the cultural landscape; the need to involve local authorities, heritage managers and tourism organisations to promote these areas in the best possible way. All these UNESCO World Heritage sites share the commitment to develop policies based on the outstanding qualities of their superb landscapes.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Myriam LAIDET and Katalin TÓTH

Management Team of the VITOUR Programme
Mission Val de Loire – Patrimoine Mondial
81, rue Colbert – BP 4322, 37043 TOURS CEDEX 1, France

Contact the author

Keywords

Pole of competitiveness, partnership of excellence, wine landscapes, oenotourism, heritage, culture

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Image based vineyard yield prediction using empirical models to estimate bunch occlusion by leaves

Vineyard yield estimation brings several advantages to the entire wine industry. It can provide useful information to support decision making regarding bunch thinning practices, harvest logistics and marketing strategies, as well as to manage stored wine and cellar tanks allocation. Today, this estimation is performed mainly using manual methods based on destructive bunch sampling.

Intelligent article to control the internal pressure in continue in bottles

An intelligent packaging might, among others, provide information and allow monitoring of the quality of the packed product or its surrounding environment. A recent project on micro-flow wine bottles closed with aluminium screw cap and tightness liner, highlighted the importance of monitoring the internal overpressure continuously, in real-time and at least for 72 hours, since the internal pressure on the tightness liner and the micro-flow are related. Real-time and continuous measurements are not the standard methods of measurement of the overpressure, yet. The most used equipment for the determination of the pressure in wine bottle is the aphrometer, a destructive device that supplies a single value of pressure.

Measuring elemental sulfur in grape juice in relation to varietal thiol formation in Sauvignon blanc wines.

Aim: Sauvignon blanc displays a range of styles that can include prominent tropical and passionfruit aromas. Both sensory evaluation and chemical analysis have confirmed the above-average presence of ‘varietal thiols’ in the Sauvignon blanc wines from Marlborough, New Zealand.

Comportement de différents clones de Sauvignon blanc dans certains terroirs viticoles du Friuli-Venezia Giulia (Nord-Est de l’Italie)

The worldwide reputation of Sauvignon Blanc has led technicians to ask themselves various questions about the cultivation of this variety: choice of the most suitable localities, the most effective agronomic strategies and the most appropriate wine-growing techniques, to bring out its particular aroma.

BIOSORPTION OF UNDESIRABLE COMPONENTS FROM WINE BY YEAST-DERIVED PRODUCTS

4-Ethylphenol (EP) in wine is associated with organoleptic defects such as barn and horse sweat odors. The origin of EP is the bioconversion reaction of p-coumaric acid (CA), naturally present in grapes and grape musts by contaminating yeasts of the genus Brettanomyces bruxellensis.
Yeast cell walls (YCW) have shown adsorption capacities for different compounds. They could be applied to wines in order to adsorb either CA and/or EP and thus reduce the organoleptic defects caused by the contaminating yeasts.