Terroir 2008 banner
IVES 9 IVES Conference Series 9 VITOUR – The European World Heritage Vineyards

VITOUR – The European World Heritage Vineyards

Abstract

UNESCO World Heritage as the link, Europe as the area covered. VITOUR network is born on this idea, on Loire Valley Mission and InterLoire’s initiative. It gathers vineyards inscribed on UNESCO World Heritage List.
The economic, tourist, environmental and heritage issues form the bond for this particularly emblematic partnership of wine-producing professionals and managers of the listed sites. Supported by the European Union (INTERREG IIIC), seven sites are working together on the sustainable development of their outstanding landscapes and promoting their discovery through innovative tourism actions.
These sites share many common features: proximity to a river, major component of vine; the “terroir” and know-how of the vine-growers helpful to make understand the reality of the cultural landscape; the need to involve local authorities, heritage managers and tourism organisations to promote these areas in the best possible way. All these UNESCO World Heritage sites share the commitment to develop policies based on the outstanding qualities of their superb landscapes.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Myriam LAIDET and Katalin TÓTH

Management Team of the VITOUR Programme
Mission Val de Loire – Patrimoine Mondial
81, rue Colbert – BP 4322, 37043 TOURS CEDEX 1, France

Contact the author

Keywords

Pole of competitiveness, partnership of excellence, wine landscapes, oenotourism, heritage, culture

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Identification and formation kinetic study of phenolic compounds-volatile thiols adducts by enzymatic oxidation

By using HPLC-ESI-MS, 1H, 13C and 2D NMR, new addition products between catechin, epicatechin, caftaric acid and 3SH were characterized. Caftaric acid formed more rapidly adducts with 3SH than catechin and epicatechin in the absence of other nucleophiles.

Southern Oregon Ava landscape and climate for wine production

The Southern Oregon American Viticultural Area (AVA) consists of the Applegate Valley, Rogue Valley, Umpqua Valley, Elkton Oregon, and Red Hills of Douglas County sub-AVAs (Figure 1) that are some of the many winegrape producing regions found within the intermountain valleys along the west coast of the United States.

Influence of basalt on the terroir of the Columbia Valley American Viticultural Area

The Columbia Valley American Viticultural Area (AVA) of the Pacific Northwest, USA is the world’s largest officially recognized viticultural area with basalt bedrock.

INTENSE PULSED LIGHT FOR VINEYARD WASTEWATER: A PROMISING NEW PROCESS OF DEGRADATION FOR PESTICIDES

The use of pesticides for vine growing is responsible for generating an important volume of wastewater. In 2009, 13 processes were authorized for wastewater treatment but they are expensive and the toxicological impact of the secondary metabolites that are formed is not clearly established. Recently photodecomposition processes have been studied and proved an effectiveness to degrade pesticides and to modify their structures (Maheswari et al., 2010, Lassale et al., 2014). In this field, Pulsed Light (PL) seems to be an interesting and efficient process (Baranda et al., 2017). Therefore, the aim of this work was to investigate the PL technology as a new process for the degradation of pesticides.

Fertilization Lysimeters provide new insights into the needs and impacts of N nutrition on table grape performance and fruit yield and quality

Table grape production requires adequate nitrogen (N) supply to sustain vine performance and obtain high yields. However, excess agricultural N fertilization is a major source of groundwater contamination and air pollution. Therefore, there is a strong need for empirically based precision N fertilization schemes in vineyards, for optimizing grape yield and quality while minimizing their environmental impact.
Our aim was to unequivocally quantify table grape N requirements, elucidate the drivers of daily N uptake, and quantify the relationship between fertigation N levels and vine growth, fruit yield, composition, and quality. For this, forty ‘Early Sweet’ (early-maturing, white) and ‘Crimson seedless’ (late-maturing, red) vines were grown in 500L drainage-lysimeters for 2 fruiting seasons, while subjected to five continuous N fertigation treatments ranging from 10 to 200 ppm.