Terroir 2008 banner
IVES 9 IVES Conference Series 9 VITOUR – The European World Heritage Vineyards

VITOUR – The European World Heritage Vineyards

Abstract

UNESCO World Heritage as the link, Europe as the area covered. VITOUR network is born on this idea, on Loire Valley Mission and InterLoire’s initiative. It gathers vineyards inscribed on UNESCO World Heritage List.
The economic, tourist, environmental and heritage issues form the bond for this particularly emblematic partnership of wine-producing professionals and managers of the listed sites. Supported by the European Union (INTERREG IIIC), seven sites are working together on the sustainable development of their outstanding landscapes and promoting their discovery through innovative tourism actions.
These sites share many common features: proximity to a river, major component of vine; the “terroir” and know-how of the vine-growers helpful to make understand the reality of the cultural landscape; the need to involve local authorities, heritage managers and tourism organisations to promote these areas in the best possible way. All these UNESCO World Heritage sites share the commitment to develop policies based on the outstanding qualities of their superb landscapes.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Myriam LAIDET and Katalin TÓTH

Management Team of the VITOUR Programme
Mission Val de Loire – Patrimoine Mondial
81, rue Colbert – BP 4322, 37043 TOURS CEDEX 1, France

Contact the author

Keywords

Pole of competitiveness, partnership of excellence, wine landscapes, oenotourism, heritage, culture

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Use of hyperspectral data for assessing vineyard biophysical and quality parameters in northern Italy

A total of 39 study sites from 11 commercial vineyards located in two traditional growing areas of Northern Italy were identified for airborne hyperspectral acquisition in summer 2009 with the Aisa-EAGLE Airborne Hyperspectral Imaging Sensor.

HOW DO ROOTSTOCKS AFFECT CABERNET SAUVIGNON AROMATIC EXPRESSION?

Grape quality potential for wine production is strongly influenced by environmental parameters such as climate and agronomic factors such as rootstock. Several studies underline the effect of rootstock on vegetative growth of the scions [1] and on berry composition [2, 3] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Little is known about the effect of rootstock genetic variability on the aromatic composition in wines; thus further investigations are needed.

Could intermittent shading, as produced in agrivoltaics, mitigate global warming effects on grapevine?

Global warning increases evaporative demand and accelerates grapevine phenology. As a consequence, the ripening phase shifts to warmer and drier periods. This results in lower acidity and higher sugar levels in berries, yielding too alcoholic wines with altered organoleptic properties. Agrivoltaics, which combines crop and renewable energy production on the same land using photovoltaic panels, emerged as a promising innovation to counteract these impacts by partially shading the plants.

Chemical boundaries of wine identity: rationalizing grape and wine aroma diversity for improved terroir management

Aims: Wine perceived quality lies on a number of different factors. Among these, sensory features, which are in turn dependent on chemical composition, play a primary role. There is traditionally a great emphasis on producing wines that have specific sensory profiles, particularly aroma, that reflect identity features connected to the place and the variety of origin. In the case of high quality

Exploring high throughput secondary trait phenomics to improve grapevine breeding

Modern grapevine breeding programs have overcome many challenges using genomic selection, which has allowed breeders to make targeted selections at earlier stages in the breeding process. However, the cost of genetic testing may present a burden for some programs, and markers often struggle to accurately predict quantitative traits. Recent advances in high throughput, high-dimensional data have provoked investigation into the use of high-dimensional phenomics as a low-cost addition to the grape breeder’s toolkit that may offer advantages in predicting quantitative traits. High-dimensional secondary trait (HDST) data has been employed in annual crops for prediction of agriculturally important traits such as yield.