Terroir 2006 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2006 9 Climate component of terroir (Terroir 2006) 9 Effect of certain climatic variables on the phenolic and aromatic composition of two red grape varieties (Merlot and Cabernet-Sauvignon) grown in the Mancha region (Spain)

Effect of certain climatic variables on the phenolic and aromatic composition of two red grape varieties (Merlot and Cabernet-Sauvignon) grown in the Mancha region (Spain)

Abstract

Between 2002 and 2004 we studied the behaviour of two red grape varieties – Merlot and Cabernet Sauvignon – within the scope of an experimental protocol encompassing 14 plots, 7 of which had not been cultivated, situated in geographically distant locations representing different terroirs of Castilla-La Mancha. A brief geopedological characterisation was performed of the different plots (geological stratum, topography, geomorphology, type of soil…). The agronomic characteristics of the plots were also determined (crop age, planting density, vegetation growth control, fertilisation…). The most significant climatological variables for wine production, IS (Dryness Index), IH (Heliothermal Index) and IF (Cool Night Index), the dates of the four most representative phenological states in vines (shooting, semi-flowering, semi-veraison and ripening), the importance of plant cover (LAI: Leaf Area Index) and phenolic composition (phenolic ripening parameters) and aromatic composition (GC/MS: gas-phase chromatography combined with mass spectrometry) of ripe grapes were some of the parameters monitored in these years. The results obtained show that the thermal regime during the vegetative cycle and ripening, as well as certain cropping practices (particularly those that influence vine architecture and fruit characteristics and weight), bear an important influence on the phenolic and aromatic composition of grapes during ripening, even in the semi-arid conditions of La Mancha.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Raquel ROMERO, Jesús MARTINEZ, Esteban GARCÍA et Juan Luis CHACÓN

Instituto de la vid y el vino de Castilla, La Mancha (IVICAM), Ctra. de Albacete s/n, 13700 Tomelloso (Ciudad Real), Spain

Contact the author

Keywords

Cabernet-Sauvignon, Merlot, climatological variables, aromas, phenols

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

FOURIER TRANSFORM INFRARED SPECTROSCOPY IN MONITORING THE WINE PRODUCTION

The complexity of the wine matrix makes the monitoring of the winemaking process crucial. Fourier Transform Infrared Spectroscopy (FTIR) along with chemometrics is considered an effective analytical tool combining good accuracy, robustness, high sample throughput, and “green character”. Portable and non-portable FTIR devices are already used by the wine industry for routine analysis. However, the analytical calibrations need to be enriched, and some others are still waiting to be thoroughly developed.

Zoning like base instrument for the agronomist’s work in vineyard

Ad una prima analisi l’interesse dimostrato dal settore produttivo nei confronti della zonazione vitivinicola è da ricondursi al fatto che dopo i primi approcci puramente accademici

Viticultural zoning using spatial analysis: characterizing terroirs over the Southern part of the Côtes-du-Rhône appellation (France)

Les approches du terroir en tant qu’entité géographique (zonages) connaissent un développement accru récent en lien avec l’essor des SIG. Les méthodes, les objectifs et les critères utilisés varient considérablement selon les études.

WINE SWIRLING: A FIRST STEP TOWARDS THE UNLOCKING OF THE WINE’STASTER GESTURE

Right after the pouring of wine in a glass, a myriad of volatile organic compounds, including ethanol, overwhelm the glass headspace, thus causing the so-called wine’s bouquet [1]. Otherwise, it is worth noting that during wine tasting, most people automatically swirl their glass to enhance the release of aromas in the glass headspace [1]. About a decade ago, Swiss researchers revealed the complex fluid mechanics underlying wine swirling [2]. However, despite mechanically repeated throughout wine tasting, the consequences of glass swirling on the chemical space found in the headspace of wine glasses are still barely known.

Assessing and mapping vineyard water status variability using a miniaturized nir spectrophotometer from a moving vehicle

In the actual scenario of climate change, optimization of water usage is becoming critical in sustainable viticulture. Most of the current approaches to assess grapevine water status and drive irrigation scheduling are either destructive, time and labour consuming and monitor a small, limited number of plants. This work presents a novel methodology using a contactless, miniaturized, low-cost NIR spectrometer to monitor the vineyard water status variability from a moving vehicle, to provide reliable information towards precision irrigation.