Terroir 2006 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2006 9 Climate component of terroir (Terroir 2006) 9 Vine phenology and climate in Bordeaux, since the beginning of the XIXth century

Vine phenology and climate in Bordeaux, since the beginning of the XIXth century

Abstract

We analyze the effects of climate (temperature and pluviometry) on the phenologic stages of the vine (débourrement, flowering, ripening and grape harvest). We rebuilt time series starting from the beginning of the XIXth century for the Medoc and the area of Bordeaux, data very seldom mobilized by researchers. This analysis will be the occasion to show that the use of the grape harvest dates as a marker of climate evolution is problematic, in particular for the last twenty years, owing to the fact that they strongly depend on the evolution of the interventions by man (maintenance of the ground, stripping, grape harvest in green, etc). With too much emphasis on these dates of vintage, it would even be possible to assert that the climate has cooled since they are held ever more tardily. That is the reason why we privilege the dates of flowering and ripening to try to connect phenology and climate. Initially, the climatic series of variables and those concerning phenology will be mobilized to answer the interrogations on the climatic evolution of the area of Bordeaux. Because of the « cyclical » fluctuations recorded for the whole of the variables, we will show that it is difficult, to date, to demonstrate climatic warming. It seems even possible to us to show that there is a relative stability of the climate during the last two centuries in the area of Bordeaux. We will also show that « laws », such as that of Arrhenius, took some wrinkles. In addition, we will invite to prudence when it comes to the use of climatic series because of their great heterogeneity. Hence, it is very important to put in parallel the climatic data and the phenologic data. In addition, the differences between the various major phenologic stages of the vine cycle will be compared with various indices of temperatures (temperature in base 0°C and base 10°C, a number of days at maximum temperature higher than 30°C, etc.). The annual distribution of pluviometry will be also taken into account in our analysis. In spite of the interrogations which the data raise, it seems possible to mobilize them in order to show the evolution of the climate of Bordeaux and its influence on the phenology of the vine.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Jean-Michel CHEVET (1) et Jean-Pierre SOYER (2)

(1) INRA-CORELA, 65, Bd de Brandebourg, 94205, Ivry-sur-Seine cedex, France
(2) INRA-ECAV, B.P. 81, 33883, Villenave d’Ornon cedex, France

Contact the author

Keywords

phénologie, vigne, climat, température, Bordeaux, réchauffement

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

The use of cation exchange resins for wine acidity adjustment: Optimization of the process and the effects on tartrate formation and oxidative stability

Acidity adjustments are key to microbial control, sensory quality and wine longevity. Acidification with cation exchange resins -in acid cycle- offers the possibility to reduce the pH by exchanging wine cations, such as potassium (K+), for hydrogen ions (H+). During the exchange process, the removal of potassium and calcium ions contributes to limiting the formation of tartrate salts, thus offering an alternative solution to conventional methods for tartrate stability. Moreover, the reduction of wine pH and the removal of metals catalyzers (e.g. iron) could positively impact the wine’s oxidative stability. Therefore, the aims of this work were (a) to optimize the ion exchange process by testing different volumes and concentrations of sulfuric acid (H2SO4) during the acid cycle, (b) evaluate the effects of the ion exchange process on the formation of tartrate salts, and (c) analyze the oxidative stability of the treated wines.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

Climate variability and its effects in the Penedès vineyard region (NE Spain)

This study present a detailed analysis of the rainfall and temperature changes in the Penedès region in the period 1995/ 96 – 2008/09, in comparison with the trends observed during the last 50 years, and its implications on phenology and yield.

Bioprotective effect of non-Saccharomyces yeasts in wines made without SO2

The sulphur dioxide (SO2) is the most widely used additive in the wine industry because of its preservative action. However, in recent years the number of wineries that produce wines without SO2 has increased significantly because its allergenic character.

Impact of mycorrhizal inoculation of ‘Monastrell’ grapevines grafted onto different conventional vs. newly breed rootstocks 

Grafting Vitis vinifera L. (wine traditional cultivars) onto North American grapevine species or hybrids is a common practice in viticulture given their tolerance against phylloxera (Daktulosphaira vitifoliae). However, rootstock genetic background affects the response of grapevines to environmental stresses and their ability for establishing a symbiotic relationship with the microbial communities, and more specifically with arbuscular mycorrhizal fungi (AMF).
The aim of this study was to evaluate Monastrell variety (clone ENTAV 369) grafted onto three rootstocks (140Ru, 110R and RG8) characterized by a different genetic background, in combination with AMF inoculation (Rhizophagus irregularis) vs. a non-inoculated control with regards to vegetative growth, leaf gas exchange parameters, and mycorrhization.