Terroir 2006 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2006 9 Influence of vine water status (Terroir 2006) 9 Grapevine sensitivity to fungal diseases: use of a combination of terroir cartography and parcel survey

Grapevine sensitivity to fungal diseases: use of a combination of terroir cartography and parcel survey

Abstract

In front of the economic interest and seeking to respect their environment, the wine growers move gradually towards a policy of reasoning their plant health protection. This is why, starting from epidemiologic studies on grapevine pathogens, forecasting models of the risks are developed by research and experimentation bodies. These models propose only a general diagnosis at the scale of the « small area » based primarily on the climatic variables related to the climate of the vintage. In the event of important risks, the professionals are sensitized and can protect their whole vineyard. However, secondary factors are also known to intervene on the sensitivity of the vine. Those are related to the soil, the surrounding landscape or the planting material and are characteristic of a reduced area of land. The present study seeks to (1) evaluate the effect of the secondary factors on the sensitivity of the vine and (2) to create some sensitivity maps in order to better forecast the mildew and powdery risks at the plot level. The used method is based on the combination of terroir cartography, parcel survey and expertise. The influence of cartographic variables on parasitic development has been tested by using statistical methods. The results indicate that, in the Loire Valley, soil is the main influential secondary factor that affects the plot sensitivity to mildew. In this respect, the weathering model « Roche-Altération-Altérite », developed by the Grapevine and Wine Research Unit of INRA (Angers 49, France) constitutes a pertinent index. For powdery mildew, the surrounding landscape has a marked effect on the plot sensitivity.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Étienne GOULET (1), Eléonore CADY (1,2,3), Philippe CHRÉTIEN (2) and Dominique RIOUX (1)

(1) Cellule « Terroirs Viticoles », Confédération des Vignerons du Val de Loire
42 rue Georges Morel, 49071 Beaucouzé cedex
(2) Station régionale Val de Loire- ITV France, 42 rue Georges Morel, 49071 Beaucouzé cedex, France
(3) École Supérieure d’Agriculture d’Angers, 55 rue Rabelais, 49007 Angers cedex 01, France

Contact the author

Keywords

Terroir, grapevine, fungal diseases, cartography, survey

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Identification of novel aromatic precursors in winemaking grapes using an optimized fractionation and UHPLC-MS analysis

Winemaking grapes contain a diverse array of non-volatile precursors that become noticeable only after hydrolysis reactions or molecular rearrangements, during which aroma compounds are generated and released [1]. Among these, glycosidic precursors are the most abundant and play a key role in the development of wine aroma [2].

Recent observations in wine oxidation

The chemistry of wine oxidation is captured in the reactions between the oxidation products, mostly reactive electrophiles, with other wine constituents. An understanding of both components and their reactions can lead to ideas and techniques to control and mitigate or enhance these reactions to allow for the desired development of the wine. Current investigations are yielding much useful information about oxidation reactions in wine.

New genomic techniques, plant variety rights and wine law

The paper discusses potential implications of New Genomic Technologies (NGTs) on European Plant Variety and Wine Law.

Freeze-thaw temperature oscillations promote increased differential gene expression during grapevine bud dormancy

In northern cold climate conditions, chilling requirement fulfillment in dormant grapevine buds is slowed or stopped by subzero temperatures impacting the transcriptional processes needed to complete chilling requirement. Cabernet Franc and Reisling in Geneva, NY were used to determine the impact of natural oscillating temperatures on grapevine bud transcriptional activity during light and dark periods of a two-week period in January with fluctuating diurnal winter temperatures. Cabernet Franc and Reisling bud samples were collected at 32 time points during the natural vineyard temperature cycle at 6:00 (dark), 14:00 (light) and 18:00 (dark) hours) to monitor gene expression in consecutive freezing and non-freezing temperature oscillations. Genotype, light and dark, and temperature oscillations conditions were explored.

VineyardFACE: Investigation of a moderate (+20%) increase of ambient CO2 level on berry ripening dynamics and fruit composition

Climate change and rising atmospheric carbon dioxide concentration is a concern for agriculture, including viticulture. Studies on elevated carbon dioxide have already been on grapevines, mainly taking place in greenhouses using potted plants or using field grown vines under higher CO2 enrichment, i.e. >650 ppm. The VineyardFACE, located at Hochschule Geisenheim University, is an open field Free Air CO2 Enrichment (FACE) experimental set-up designed to study the effects of elevated carbon dioxide using field grown vines (Vitis vinifera L. cvs. Riesling and Cabernet Sauvignon). As the carbon dioxide fumigation started in 2014, the long term effects of elevated carbon dioxide treatment can be investigated on berry ripening parameters and fruit metabolic composition.
The present study aims to investigate the effect on fruit composition under a moderate increase (+20%; eCO2) of carbon dioxide concentration, as predicted for 2050 on both Riesling and Cabernet Sauvignon. Berry composition was determined for primary (sugars, organic acids, amino acids) and secondary metabolites (anthocyanins). Special focus was given on monitoring of berry diameter and ripening rates throughout three growing seasons. Compared to previous results of the early adaptative phase of the vines [1], our results show little effect of eCO2 treatment on primary metabolites composition in berries. However, total anthocyanins concentration in berry skin was lower for eCO2 treatment in 2020, although the ratio between anthocyanins derivatives did not differ.
[1] Wohlfahrt Y., Tittmann S., Schmidt D., Rauhut D., Honermeier B., Stoll M. (2020) The effect of elevated CO2 on berry development and bunch structure of Vitis vinifera L. cvs. Riesling and Cabernet Sauvignon. Applied Science Basel 10: 2486