Terroir 2006 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2006 9 Influence of vine water status (Terroir 2006) 9 Intra-block variations of vine water status in time and space

Intra-block variations of vine water status in time and space

Abstract

Vine water status was measured on 96 plots of three vines inside a vineyard block of 0.28 ha during three years: 2003, 2004 and 2005. Three physiological indicators were implemented: stem water potential, carbon isotope discrimination measured on grape sugars at ripeness (δ13C) and canopy temperature measured by high resolution remote sensing. For stem water potential, measurements were taken on every single vine of each plot. The objectives of this study were to assess (i) the spatial distribution of vine water status inside a vineyard block, (ii) the temporal stability of this distribution from one date to another in the same year and (iii) the temporal stability of this distribution from one year to another. The three physiological indicators provided accurate data of vine water status, as was shown by high correlation coefficients between stem water potential values and canopy temperature, as well as between stem water potential and δ13C. Vine water status maps obtained with either stem water potential data or δ13C data showed similar patterns of spots that were more or less affected by water deficit stress, in relation to local soil water holding capacity. Stem water potential was measured in September 2004 on two days in a row, one cloudy day and the next day with higher temperatures and clear conditions. Stem water potential values were highly correlated between these two days, which confirms the fact that stem water potential is mainly influenced by soil water status. However, stem water potential values were in average 0.08 MPa higher on the cloudy day, which shows a measurable but limited influence of evaporative demand on absolute stem water potential values. Both stem water potential values and δ13C data were well correlated from one year to another, which shows a stability of spatial distribution of vine water status inside the block. This can be explained by the fact that soil water holding capacity is invariable from one year to another. Surprisingly, stem water potential values measured at the same time between vine 1, vine 2 and vine 3 of each plot were not very well correlated, although the soil can be considered homogeneous inside a plot (3 m2). This observation shows high variability in vine to vine water status, in relation to individual vine rooting depth and canopy size. Consequently, replicates on several adjacent vines have to be averaged out to obtain accurate vine water status data for each plot.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Cornelis van LEEUWEN (1), Jean-Pascal GOUTOULY (2), Anne-Marie COSTA-FERREIRA (1), Cloé AZAÏS (1), Elisa MARGUERIT (1), Jean-Philippe ROBY (1), Xavier CHONE (1), Christian GERMAIN (1), Saeid HOMAYOUNI (1) and Jean-Pierre GAUDILLERE (2)

(1) ENITA de Bordeaux, 1 cours du Général de Gaulle, CS 40201, 33175 Gradignan cedex, France
(2) INRA-ECAV, B.P. 81, 33883 Villenave d’Ornon, France

Contact the author

Keywords

Vine water status, precision viticulture, carbon isotope discrimination, stem water potential

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Chitosan from mushroom by-products: sustainable extraction process and winemaking application

Chitosan is a biopolymer industrially obtained from the deacetylation of chitin, the second most abundant polysaccharide on earth, after cellulose. It is extracted from various terrestrial and marine resources, including insects, grasshoppers, shrimps, crabs, lobsters, squids, and fungi. chitosan has a polycationic character due to the free amine groups along its chemical backbone, and depending on its deacetylation degree (DD) and molecular weight (MW), it shows variable properties that differ from those of other natural polysaccharides.

Evaluation of the hydroxyethyl radical formation kinetic and Strecker aldehydes distribution for assessing the oxidative susceptibility of Chardonnay wines

Over the last decade, much attention has been paid on the oxidative susceptibility of white wines, given its key role in determining their ageing potential.

Extreme canopy management for vineyard adaptation to climate change: is it a good idea?

Climate change constitutes an enormous challenge for humankind and for all human activities, viticulture not being an exception. Long-term strategic changes are probably needed the most, but growers also need to deal with short-term changes: summers that are getting progressively warmer, earlier harvest dates and higher pH in musts and wines. In the last 10-15 years, a relevant corpus of research is being developed worldwide in order to evaluate to which extent extreme canopy management operations, aimed at reducing leaf area and, thus, limiting the source to sink ratio, could be useful to delay ripening. Although extreme canopy management can result in relevant delays in harvest dates, longer term studies, as well as detailed analysis of their implications on carbohydrate reserves, bud fertility and future yield are desirable before these practices can be recommended.

Quantification of γ-nonalactone in botrytized and non-botrytized New Zealand and Australian wines

ƴ-Nonalactonehas been identified as a significant contributor to the aroma profile of a range of wines and is associated with stonefruit and coconut descriptors.

Foliar application of specific inactivated yeast to enhance the varietal aroma precursors accumulation on cv. Traminer

The production of grapes with a balanced composition is one of the main goals that agronomists and oenologists pursue to produce premium quality wines.