Terroir 2006 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2006 9 Influence of vine water status (Terroir 2006) 9 Intra-block variations of vine water status in time and space

Intra-block variations of vine water status in time and space

Abstract

Vine water status was measured on 96 plots of three vines inside a vineyard block of 0.28 ha during three years: 2003, 2004 and 2005. Three physiological indicators were implemented: stem water potential, carbon isotope discrimination measured on grape sugars at ripeness (δ13C) and canopy temperature measured by high resolution remote sensing. For stem water potential, measurements were taken on every single vine of each plot. The objectives of this study were to assess (i) the spatial distribution of vine water status inside a vineyard block, (ii) the temporal stability of this distribution from one date to another in the same year and (iii) the temporal stability of this distribution from one year to another. The three physiological indicators provided accurate data of vine water status, as was shown by high correlation coefficients between stem water potential values and canopy temperature, as well as between stem water potential and δ13C. Vine water status maps obtained with either stem water potential data or δ13C data showed similar patterns of spots that were more or less affected by water deficit stress, in relation to local soil water holding capacity. Stem water potential was measured in September 2004 on two days in a row, one cloudy day and the next day with higher temperatures and clear conditions. Stem water potential values were highly correlated between these two days, which confirms the fact that stem water potential is mainly influenced by soil water status. However, stem water potential values were in average 0.08 MPa higher on the cloudy day, which shows a measurable but limited influence of evaporative demand on absolute stem water potential values. Both stem water potential values and δ13C data were well correlated from one year to another, which shows a stability of spatial distribution of vine water status inside the block. This can be explained by the fact that soil water holding capacity is invariable from one year to another. Surprisingly, stem water potential values measured at the same time between vine 1, vine 2 and vine 3 of each plot were not very well correlated, although the soil can be considered homogeneous inside a plot (3 m2). This observation shows high variability in vine to vine water status, in relation to individual vine rooting depth and canopy size. Consequently, replicates on several adjacent vines have to be averaged out to obtain accurate vine water status data for each plot.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Cornelis van LEEUWEN (1), Jean-Pascal GOUTOULY (2), Anne-Marie COSTA-FERREIRA (1), Cloé AZAÏS (1), Elisa MARGUERIT (1), Jean-Philippe ROBY (1), Xavier CHONE (1), Christian GERMAIN (1), Saeid HOMAYOUNI (1) and Jean-Pierre GAUDILLERE (2)

(1) ENITA de Bordeaux, 1 cours du Général de Gaulle, CS 40201, 33175 Gradignan cedex, France
(2) INRA-ECAV, B.P. 81, 33883 Villenave d’Ornon, France

Contact the author

Keywords

Vine water status, precision viticulture, carbon isotope discrimination, stem water potential

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Enological characterization of mold resistant varieties grown in the Trentino Alpine Region

Among the different strategies used in vine growing to fight against mold diseases, it can be pointed out the hybridation of traditional grape varieties with others, presenting a genetic resistance to pathogen attack. The research in this field has been encouraged in recent years due to the increased concern about human safety and environmental pollution linked to the use of agrochemicals. This approach allows to limit the number of treatments and the type of active compounds used in vine management. The environment determines the pressure degree of the diseases on vines and the biologic response of the plant to their attack.

CropManage online decision support tool for irrigation scheduling of vineyards

CropManage (CM) is an online decision support service (DSS) developed by the University of California, Division of Agriculture and Natural Resources for assisting farmers with efficiently managing water and nitrogen fertilizer to match the site-specific needs of their crops.

Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

INTRODUCTION: Foam stability of sparkling wines is significantly favored by the presence of surface active agents such as proteins and polysaccharides [1]. For that reason, the renowned sparkling wines are aged after the second fermentation in contact with the lees for several months (even years). Thereby wines are enriched in these macromolecules due to yeast autolysis. Since this practice is slow and costly, winemakers are seeking for alternative procedures to increase their concentration in base wines. In that sense, the supplementation with inactive yeast during alcoholic fermentation has been proposed [2]. The aim of this study was to determine whether this new strategy is really useful for enriching base wines in macromolecules and for improving foam properties of the base wines.

Cover crops in viticulture

In this audio recording of the IVES science meeting 2022, Gonzaga Santesteban (Department of Agronomy, Biotechnology and Food Science, Public University of Navarra (UPNA), Pamplona, Navarra, Spain) speaks about cover crops in viticulture. This presentation is based on 2 original articles accessible for free on OENO One.

Chemical markers in wine related to low levels of yeast available nitrogen in the grape

Nitrogen is an important nutrient of yeast and its low content in grape must is a major cause for sluggish fermentations. To prevent problems during fermentation, a supplementation of the must with ammonium salts or more complex nitrogen mixtures is practiced in the cellar. However this correction seems to improve only partially the quality of wine [1]. In fact, yeast is using nitrogen in many of its metabolic pathways and depending of the sort of the nitrogen source (ammonium or amino acids) it produces different flavor active compounds. A limitation in amino acids can lead to a change in the metabolic pathways of yeast and consequently alter wine quality.