Water relations of woody perennial plant species

Abstract

Field irrigation experiments were performed on young « Nonpareil » almond trees, mature « Bartlett » pear trees and mature « Pinot Noir » grapevines, to determine the relation of a number of alternative measures of plant water status (predawn and midday stem and leaf water potential), to a number of indices of plant physiological activity (leaf conductance, vegetative growth and fruit growth and composition). Almonds were exposed to three levels of irrigation over three years, and midday stem water potential (SWP) and leaf conductance, collected at approximately weekly intervals, is reported for the third year of the study. A strong linear increase in both leaf conductance and trunk growth occurred with increasing SWP, and this relation was consistent both within and between treatments. A similarly positive linear relation was found between SWP and fruit size in pear, with a negative relation between SWP and fruit soluble solids and fruit color. In grapevine, SWP was found to be uniform across all lower canopy positions tested (trunk, cordon and near the base of current year shoots) and positively correlated to early season shoot growth even before irrigation treatments were applied. Midday SWP was found to be more sensitive than midday leaf water potential (LWP) for detecting treatment differences over the course of the season, but both were well correlated to average seasonal leaf conductance within and between irrigation treatments. Predawn SWP and LWP were not as well correlated to average seasonal leaf conductance, but the most important factor determining midday leaf conductance was wind speed, indicating that grape leaf stomatal responses are quite sensitive to this environmental factor.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Kenneth A. SHACKEL

Department of Plant Sciences/Pomology
University of California
Davis, CA, USA, 95616-8683

Contact the author

Keywords

Stem water potential, SWP, leaf water potential, LWP, predawn, midday, leaf conductance, fruit growth, fruit quality

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Factors affecting flavonols instability of red wines due to climate change

Due to varietal factors, the formation of undesirable deposits of flavonols, especially quercetin (Q), occurs in several red wines.

From varietal and terroir expression to off-odors: chemical background of wine aroma evolution during aging

Expression of sensory attributes that reflect the varietal and geographical origin of wines (aka terroir) is central to perceived wine quality and reputation of wine producing regions.

Breeding grapevines for disease and low temperature tolerance: the U.S. perspective

Most grape scion cultivars grown around the world are derived from a single species, Vitis vinifera. Yet, the proportion of interspecific hybrids is increasing for a variety of reasons, including resistance to abiotic stresses such as low temperatures; societal, economic and environmental pressures to reduce pesticide usage; and to add a greater range of flavors to new table grape cultivars.

Evaluation of intrinsic grape berry and cluster traits for postharvest withering kinetics prediction

To make some particular wine styles (e.g., Amarone), grapes are harvested and stored in dehydrating rooms before vinification, in a process called withering

Sustainability as system innovation: sustainability as system innovation: a returnable system for glass wine bottles

Introduction increasing sustainability is essential and a societal challenge, requiring fundamental changes in behaviour and attitudes. This applies to both producers and consumers. For the wine industry in particular, such a change is a major challenge. An eip-agri research project is evaluating the introduction of a returnable glass system in the german wine industry as a key solution for increasing sustainability. Given the need for change associated with a returnable system, the project is theoretically grounded in systems innovation, as this approach provides solutions for complex, transformative change.