Water relations of woody perennial plant species

Abstract

Field irrigation experiments were performed on young « Nonpareil » almond trees, mature « Bartlett » pear trees and mature « Pinot Noir » grapevines, to determine the relation of a number of alternative measures of plant water status (predawn and midday stem and leaf water potential), to a number of indices of plant physiological activity (leaf conductance, vegetative growth and fruit growth and composition). Almonds were exposed to three levels of irrigation over three years, and midday stem water potential (SWP) and leaf conductance, collected at approximately weekly intervals, is reported for the third year of the study. A strong linear increase in both leaf conductance and trunk growth occurred with increasing SWP, and this relation was consistent both within and between treatments. A similarly positive linear relation was found between SWP and fruit size in pear, with a negative relation between SWP and fruit soluble solids and fruit color. In grapevine, SWP was found to be uniform across all lower canopy positions tested (trunk, cordon and near the base of current year shoots) and positively correlated to early season shoot growth even before irrigation treatments were applied. Midday SWP was found to be more sensitive than midday leaf water potential (LWP) for detecting treatment differences over the course of the season, but both were well correlated to average seasonal leaf conductance within and between irrigation treatments. Predawn SWP and LWP were not as well correlated to average seasonal leaf conductance, but the most important factor determining midday leaf conductance was wind speed, indicating that grape leaf stomatal responses are quite sensitive to this environmental factor.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Kenneth A. SHACKEL

Department of Plant Sciences/Pomology
University of California
Davis, CA, USA, 95616-8683

Contact the author

Keywords

Stem water potential, SWP, leaf water potential, LWP, predawn, midday, leaf conductance, fruit growth, fruit quality

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Impact of environmental conditions in vscs production during wine fermentation by Saccharomyces cerevisiae

The aroma of wine is one of the most important determinants of quality as it strongly influences the consumer’s acceptance or rejection. Among the thousands of molecules comprising the wine aroma, sulfur-containing compounds can be considered as a “double-edged sword”: some of them, deriving from varietal precursors provide fruity pleasant aromas, while other ones, produced by yeast metabolism are related to “unpleasant” aromas

Radiative and thermal effects on fruit ripening induced by differences in soil colour

One of the intrinsic parts of a vineyard “terroir” is soil type and one of the characteristics of the soil is it’s colour. This can differ widely from bright white, as for some calcareous soils, to red, as in “terra rossa” soils, or black, as in slate soils.

MODULATION OF YEAST-DERIVED AROMA COMPOUNDS IN CHARDONNAY WINES USING ENCAPSULATED DIAMMONIUM PHOSPHATE TO CONTROL NUTRIENT RELEASE

Yeast-derived aroma compounds are the result of different and complex biochemical pathways that mainly occur during alcoholic fermentation. Many of them are related -but not limited- to the availability of nutrients in the fermentation medium and linked to nitrogen metabolism and biomass produced. Besides, the metabolic phase of yeast also regulates the expression of many enzymes involved in the formation of aroma active compounds. The work investigates the overall effect of continuous supplementation of nutrients during alcoholic fermentation of a grape must on the volatile composition of wines.

Hydroxycinnamic acids in grapes and wines made of Tannat, Marselan and Syrah from Uruguay

Background: hydroxycinnamic acids (HCA), present in pulp and skin of grapes, are relevant compounds in red winemaking