Terroir 2006 banner
IVES 9 IVES Conference Series 9 Classification of the wine-growing environment of Central Mancha (Spain). First works

Classification of the wine-growing environment of Central Mancha (Spain). First works

Abstract

This paper describes a zoning study performed on a vast territory of around 86,500 hectares, situated in the countryside area of La Mancha Central (Castilla-La Mancha). The aim of the study was to classify the environment according to a small number of ecological criteria, establish the relevant territorial units and generate thematic maps with the different levels of criteria employed and synthetic maps by crossing these criteria. We studied the spatial distribution of one qualitative environmental factor, the nature of the substrate (lithostratigraphy), and other quantitative factors relating to the topography of the territory, slopes, exposures and theoretical insolation. The crossing of information between the two most integrating factors, lithostratigraphy and accumulated insolation – allowed us to classify the territory into homogeneous cartographic units according to the levels of criteria used. These units were prepared using automatic means (SIG) and then compared by interpreting aerial photographs at a scale of 1:20,000 and field work. The definitive cartographic units were drawn on printed maps from the vineyard register and then converted into digital format using the corresponding Arc-Info module.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Jesús MARTINEZ (1), Julio PLAZA (2), Raquel ROMERO (1) et Adela MENA (1)

1: Instituto de la vid y el vino de Castilla -La Mancha (IVICAM). Ctra. de Albacete, s/n 13700 Tomelloso (Ciudad Real), Espagne
2: Departamento de Geografía y Ordenación del Territorio. Facultad de Letras. Universidad de Castilla-La Mancha
(UCLM). Pº de Camilo José Cela, s/n, 13071 Ciudad Real, Espagne

Contact the author

Keywords

mapping, lithostratigraphy, La Mancha, zoning, theoretical insolation

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Exploring the impact of NPR3 gene silencing on the interaction between grapevine and mycorrhizal fungi through genome editing

One of the main plant defence mechanisms is the Systemic Acquired Resistance (SAR) mediated by Salicylic Acid (SA). This is a heightened and broad-spectrum immune response initiated by the exposure to pathogens, inducing resistance not only in the infected site, but also throughout the entire plant. It was demonstrated that plant immune system can be regulated by two classes of SA receptors: NONEXPRESSOR OF PR GENES 1 (NPR1) and NPR1-LIKE PROTEIN 3 and 4 (NPR3/NPR4). While NPR1 is required for SA-induction followed by the expression of pathogenesis-related (PR) protein and resistance against pathogens, NPR3/NPR4 serve as transcriptional co-repressors of SA-responsive genes.

Ethanol reduces grapevine water consumption by limiting transpiration

Studies suggest that ethanol (EtOH), triggers plant adaptation to various stresses at low concentrations (10 µM to 10 mM).

Potential of new genetic resources to improve drought adaptation of grapevine rootstocks

Grapevines are grown mainly as grafts worldwide, but the rootstocks most commonly used were selected between the late 19th and early 20th centuries and are based on reduced genetic diversity[1]. In the context of climate change, it is indeed urgent to diversify the range of rootstocks with genotypes much more adapted to drier environments, than the existing ones[2]. The aim of this study was to evaluate the potential of new genetic resources for grapevine rootstock breeding programs. For this purpose, 12 American and Asian wild Vitis species (3 to 5 accessions per species = 50 accessions) were evaluated for their rooting ability and drought response.

Mycorrhizal symbiosis modulates flavonoid and amino acid profiles in grapes of Tempranillo and Cabernet Sauvignon 

Arbuscular mycorrhizal fungi (AMF) symbiosis is probably the most widespread beneficial interaction between plants and microorganisms. AMF has been widely reported to promote grapevine growth, water and nutrient uptake as well as both biotic and abiotic stress tolerance[1]. However, the impact of AMF on grape composition has been less studied. The aim of this work was to evaluate the effects of the association between two commercial grapevine cultivars (Tempranillo and Cabernet Sauvignon grafted onto 110 rootstock) and AMF on the anthocyanin, flavonol and amino acid concentrations and profiles of grapes.

Biodiversity and biocontrol ability of Trichoderma natural populations in soil vineyards from Castilla y León region (Spain)

Trichoderma is a microorganism present in many agricultural soils and some of its species could be used as natural biological control agents. In this work, the presence of natural populations of Trichoderma was estimated in soil vineyard and its biocontrol capacity against Phaeoacremonium minimum, one of the main agent causals of grapevine trunk diseases instead of using pesticides. Moreover, physicochemical variables in soil such as pH, organic matter and nutrients were evaluated to determine a possible correlation to natural populations of Trichoderma.