Terroir 2006 banner
IVES 9 IVES Conference Series 9 Classification of the wine-growing environment of Central Mancha (Spain). First works

Classification of the wine-growing environment of Central Mancha (Spain). First works

Abstract

This paper describes a zoning study performed on a vast territory of around 86,500 hectares, situated in the countryside area of La Mancha Central (Castilla-La Mancha). The aim of the study was to classify the environment according to a small number of ecological criteria, establish the relevant territorial units and generate thematic maps with the different levels of criteria employed and synthetic maps by crossing these criteria. We studied the spatial distribution of one qualitative environmental factor, the nature of the substrate (lithostratigraphy), and other quantitative factors relating to the topography of the territory, slopes, exposures and theoretical insolation. The crossing of information between the two most integrating factors, lithostratigraphy and accumulated insolation – allowed us to classify the territory into homogeneous cartographic units according to the levels of criteria used. These units were prepared using automatic means (SIG) and then compared by interpreting aerial photographs at a scale of 1:20,000 and field work. The definitive cartographic units were drawn on printed maps from the vineyard register and then converted into digital format using the corresponding Arc-Info module.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Jesús MARTINEZ (1), Julio PLAZA (2), Raquel ROMERO (1) et Adela MENA (1)

1: Instituto de la vid y el vino de Castilla -La Mancha (IVICAM). Ctra. de Albacete, s/n 13700 Tomelloso (Ciudad Real), Espagne
2: Departamento de Geografía y Ordenación del Territorio. Facultad de Letras. Universidad de Castilla-La Mancha
(UCLM). Pº de Camilo José Cela, s/n, 13071 Ciudad Real, Espagne

Contact the author

Keywords

mapping, lithostratigraphy, La Mancha, zoning, theoretical insolation

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Oenococcus oeni clonal diversity in the carbonic maceration winemaking

This essay was aimed to describe the clonal diversity of Oenococcus oeni in the malolactic fermentation of the carbonic maceration (CM) winemaking. The free and the pressed liquids from CM were sampled and compared to the wine from a standard winemaking with previous destemming and crushing (DC) of grapes [1]. O. oeni strain typification was performed by PFGE as González-Arenzana et al. described (2014) [2]. Results showed that 13 genotypes, referred as to letters, were distinguished from the 49 isolated strains, meaning the genotype “a” the 27%, the “b” the 14%, the “c” the 12%, the “d and e” the 10 % each other, and the remaining ones less than the 8% each one.

Infrared spectroscopy investigation of fresh grapevine organs for clustering and classification.

The spectral information acquired from fresh whole grapevine organs have yet to be fully explored. Infrared spectroscopy provides the means to rapidly measure fresh plant material and providing extensive information on the physical and chemical structure of samples.

Influence of social interaction levels on panel effectiveness in developing wine sensory profiles using consensus method

The development of sensory profiles is crucial for quality control and innovation in the wine industry. If quantitative descriptive analysis is the most commonly used method for establishing sensory profiles due to its robustness, it presents significant limitations.

The temporal sensory interaction between 3-Mercaptohexanol, 3-Mercaptohexyl Acetate and Athanethiol using trata

Volatile sulphur compounds are a group of impact odorants with low odour thresholds that can contribute both positively and negatively to wine aroma. The varietal thiols, 3MH and 3MHA, are known to contribute positive tropical aromas to white wines and are most abundant in Sauvignon Blanc wines. The group of compounds contributing negative aromas are known as reductive sulphur compounds (RSCs) as they add a reductive aroma of asparagus, cooked vegetables and rotten egg to wines. All these compounds play a part in and are a result of the sulphur pathway in the yeast cell during fermentation and therefore attempting to increase the concentration of the varietal thiols may directly influence the concentration of the RSCs. The varietal thiols and the low molecular weight RSCs are highly volatile and therefore their sensory perception can change rapidly over time.

A sensometabolomic approach to understand wine mouthfeel percepts

Targeted analytical methods can overlook compounds that are a priori unknown to play a role in the mouthfeel sensations. This limitation can be overcome with the information provided by untargeted metabolomic analysis using UPLC‐QTOF-MS. To this end, an untargeted metabolomic approach applied to 42 red wines has allowed development of a model with predictive capacity by cross-validation for the “dry”, “oily” and “unctuous” sensations perceived by a sensory panel. The optimal PLS model for “dry” retained compounds with positive regression coefficients (≥ 0.17) including a trimer procyanidin, a peptide, and four anthocyanins.