Terroir 2006 banner
IVES 9 IVES Conference Series 9 Effects of different organic amendments on soil, vine, grape and wine, in a long-term field experiment in Chinon vineyard (France)

Effects of different organic amendments on soil, vine, grape and wine, in a long-term field experiment in Chinon vineyard (France)

Abstract

In a long-term experiment carried out in Chinon vineyard (37, France) during 23 years, the effects of several organic amendments were studied on soil, vine, grapes and wine. Four main treatments were compared on a calcareous sandy soil: control without organic amendment, dry crushed pruning wood at 2.1.t-1.ha-1.year-1 (D1), cow manure at 10 t-1. ha-1.year-1 (D1) and cow manure applied at 20 t-1.ha-1.year-1 (D2). D1 levels were calculated to fill the annual humus losses by mineralization. During the experiment, the organic matter content of topsoil (0-30 cm) decreased from 13.9 g.kg-1 to 11.1 g.kg-1 in control. Other treatments maintained or strongly increased the organic matter content of soil, according to applied organic manure levels (21.9 g.kg-1 measured in 1998, in cow manure D2 treatment). Soil CEC, soil moisture at field capacity, and amounts of available P, K and Mg were significantly improved in different organic treatments.

The weight of pruning wood and grape yield were not modified in D1 organic amendments, but were significantly lower in D2 cow manure. Nitrogen rate in leaves, as well as in berries and in wine, was higher in this last treatment. Also, in D2 cow manure grape composition was unfavourably modified. Consequently, alcoholic rate, colour intensity, anthocyanins and phenolic compounds of wine were lower, but total acidity and pH were higher than in other treatments.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

René MORLAT (1) and Jean-Claude GRAVIER (2)

(1) U.V.V, Centre INRA, 42, rue G. Morel, BP 60057, 49071 Angers, Beaucouzé, France
(2) Domaine des Fontenils, 37500 Chinon, France

Contact the author

Keywords

organic matter, soil, vine, berry, wine

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Investigating the impact of bottle color, temperature and light exposure on rose wine characteristics

Rosé is leading the fastest growth wine category which hit a 40% increase since 2002. France accounts for over a third (34%) of global consumption followed by the US

Influence of two yeast strains and different nitrogen nutrition on the aromatic compounds in Lugana wine

Lugana Protected Designation of Origin (PDO) wines are made from Turbiana grapes. The aroma of Lugana wines results from the combined contribution of esters, terpenes, norisprenoids, sulfur compounds and the benzenoid methyl salicylate. This study aims to investigate how volatile aroma compounds are affected by different nitrogen supplies and yeast strains. Wines were produced with a standard protocol with 2021 Turbiana grapes with two different yeasts Zymaflore Delta e Zymaflore X5 (Laffort, France).During the alcoholic fermentation of the must, when H2S appeared, additions of various nitrogen supply were made: inorganic nitrogen, organic nitrogen, a mix of inorganic and organic nitrogen and organic nitrogen with an addition of pure methionine. During wine fermentation, a daily measurement of hydrogen sulfide was carried out.

Mitigation of retronasal smoke flavor carryover in the sensory analysis of smoke affected wines

With the steady rise in wildfire occurrence in wine regions around the world, there are quality issues beginning to face the wine industry. These fires produce clouds of smoke which have the ability to carry organic molecules across vast distances that can be absorbed by grapes. When these compounds make their way into the final wine, unpleasant smokey and burnt flavors are present, along with a lasting ashy finish. Along with the volatile compounds carried by smoke, once incorporated into the fruit these compounds become bound to sugars, forming glycosidic compounds.

Landscape qualities and keys for action

Parallèlement à la connaissance des aptitudes viticoles, le terroir témoigne d’une identité locale, d’une spécificité des conditions de productions et d’une originalité des lieux.

Adapting the vineyard to climate change in warm climate regions with cultural practices

Since the 1980s global regime shift, grape growers have been steadily adapting to a changing climate. These adaptations have preserved the region-climate-cultivar rapports that have established the global trade of wine with lucrative economic benefits since the middle of 17th century. The advent of using fractions of crop and actual evapotranspiration replacement in vineyards with the use of supplemental irrigation has furthered the adaptation of wine grape cultivation. The shift in trellis systems, as well as pruning methods from positioned shoot systems to sprawling canopies, as well as adapting the bearing surface from head-trained, cane-pruned to cordon-trained, spur-pruned systems have also aided in the adaptation of grapevine to warmer temperatures. In warm climates, the use of shade cloth or over-head shade films not only have aided in arresting the damage of heat waves, but also identified opportunities to reduce the evapotranspiration from vineyards, reducing environmental footprint of vineyard. Our increase in knowledge on how best to understand the response of grapevine to climate change was aided with the identification of solar radiation exposure biomarker that is now used for phenotyping cultivars in their adaptability to harsh environments. Using fruit-based metrics such as sugar-flavonoid relationships were shown to be better indicators of losses in berry integrity associated with a warming climate, rather than solely focusing on region-climate-cultivar rapports. The resilience of wine grape was further enhanced by exploitation of rootstock × scion combinations that can resist untoward droughts and warm temperatures by making more resilient grapevine combinations. Our understanding of soil-plant-atmosphere continuum in the vineyard has increased within the last 50 years in such a manner that growers are able to use no-till systems with the aid of arbuscular mycorrhiza fungi inoculation with permanent cover cropping making the vineyard more resilient to droughts and heat waves. In premium wine grape regions viticulture has successfully adapted to a rapidly changing climate thus far, but berry based metrics are raising a concern that we may be approaching a tipping point.