Terroir 2006 banner
IVES 9 IVES Conference Series 9 Results of late-wurmian to present-day climatic-geological evolution on to spatial variability of pedologic-geological characters of the AOC Gaillac terroirs (Tarn, Midi-Pyrénées)

Results of late-wurmian to present-day climatic-geological evolution on to spatial variability of pedologic-geological characters of the AOC Gaillac terroirs (Tarn, Midi-Pyrénées)

Abstract

The AOC Gaillac area is divided into three main terroirs : « The left bank terraces », « The right bank coteaux » and « The plateau Cordais ». This division is valid at a regional scale, but it suffers of a number of local-scale exceptions. This spatial variability of the pedologic-geologic characteristics at the plot scale has been derived mainly from the main late-Würmian solifluxion phase occurring at the transition between the peri-glacial climate and the Holocene temperate conditions (13,000-10,000 yrs BP). This soil movement processing has generated tongue-shaped features composed of a mixed molassic-fluviatil material mostly on north-oriented slopes, concealing the in-situ molassic bedrock. This spatial variability has to be taken into account in any viticultural zoning strategy using extraction of morphometric data from a Digital Elevation Model (DEM) as slope gradient and slope orientation maps.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Pierre COURJAULT-RADE (1), Marguerite MUNOZ (1), Eric MAIRE1 et Nicolas HIRISSOU (2)

(1) Laboratoire des Mécanismes de Transferts en Géologie (LMTG), UMR 5563 CNRS, 14, avenue E. Belin, 31400 Toulouse, France
(2) Domaine du Moulin, chemin de Bastié, 81600 Gaillac, France

Contact the author

Keywords

Gaillac, geology, scale analysis, terroirs, viticultural zoning

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Untangling belowground response of grapevines to cover crop competition

Cover crops are planted in vineyards for multiple benefits including soil conservation, weed management, regulation of grapevine vegetative growth

Organic and biodynamic viticulture affect soil quality and soil microbial diversity

The production of organically grown crops developed exponentially in the last few decades based on consumer demands for healthy food

Looking for a more efficient genotypes in water use. A key for a sustainable viticulture

Aim: Grapevine has traditionally been widely cultivated in drylands. However, in recent decades, a significant part of the viticulture all over the word and specifically in Mediterranean basin, is being irrigated. In recent years, due to climate change, among other reasons, the available natural water resources have been reduced substantially compromising the sustainability of viticulture, especially in the most arid areas

Comparison of the free radical-scavenging activity in infected oidium and sound dolcetto grape cultivar grown in a terroir of Central Italy

The importance of polyphenols, which are present in many vegetables and grapes too, is well-know and documented. Specific research works about the red grape

The temperature‐based grapevine sugar ripeness (GSR) model for adapting a wide range of Vitis vinifera L. cultivars in a changing climate

 Temperatures are increasing due to climate change leading to advances in grapevine phenology and sugar accumulation in grape berries.