Terroir 2006 banner
IVES 9 IVES Conference Series 9 The environmental impact of viticulture: analysis of the influence type of biofertilisers on wine quality and microbiology activity of soil

The environmental impact of viticulture: analysis of the influence type of biofertilisers on wine quality and microbiology activity of soil

Abstract

The trial was conducted in variety/rootstock Riesling/Kober 5 BB in the vineyard district of Vrsac. The vineyard was planted in 1996 on a south-facing slope, with rectangular type pruning of 3×1 m. The training system is of symmetric cordon type and mixed type pruning is practiced. At the beginning of vegetation of grapevine, in the vine row microbiological fertilizer (A-Azotobacter chroococcum, AH-Azotobacter chroococcum+humate, ABC- Azotobacter chroococcum+ Bacillus megaterium+Bacillus circulans, and ABC+H-Azotobacter chroococcum+Bacillus megaterium+Bacillus circulans+ humate incorporated in the top 20 cm of soil. Control treatment (K-control) was not fertilizer. In investigation years 2003, 2004 and 2005, it was only fertilizer in vineyard. Microbiological fertilizers were soluble in water. Analyses of the influence type of biofertilizers on total number of bacteria and input populations of bacteria were investigated in harvest period. Results point out that total number of bacteria increase, in comparator of control, in all combination of biofertilizers. Population of Azotobakter choococcum is more numerous than other bacteria. Analyses of chemical composition of wine and wine testing had shown differences between applied beofirtilizers.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

B. SIVCEV, V. RAICEVIC, N. PETROVIC, N. LEKIC and B. LALIC

Faculty of Agriculture, Belgrade-Zemun, Nemanjina 6, Serbia and Montenegro

Contact the author

Keywords

microbiological fertilizer, yield, grape and wine quality

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Climatic influences on Mencía grapevine phenology and grape composition for Amandi (Ribeira Sacra, Spain)

During the year 2009 we have studied the phenology and grape composition of Mencía cultivar in seven different situations (orientation and altitude) for Amandi subzone

Digitalization and valorization of the genotypic and phenotypic information retained within the FEM grapevine germplasm

The maintenance and valorization of genetic diversity is an undoubtable resource for the viticulture of the future, since the climate crisis is forcing us to think of new, more resilient varieties. For this reason, the grapevine germplasm of the Fondazione Edmund Mach has been continuously expanded in the last decade to a total of 3,120 accessions, whose trueness-to-type has been verified by means of the universal set of nine microsatellites. About two thirds are V. vinifera subsp. vinifera accessions, while the rest consists of naturalized and selected hybrids, V. vinifera subsp. sylvestris, and pure species. The genetic material has also been characterized over three consecutive years for ampelographic, vine development, and biotic stress response traits to be exploited for experimental purposes.

Effect of intra‐vineyard ripeness variation on the efficiency of commercial enzymes on berry cell wall deconstruction under winemaking conditions

Intra-vineyard variation grape berry ripening occurs within bunches, between bunches on the same vine and between vines. Although it is assumed that such variation also occurs at the grape berry cell wall level, no study to data has investigated in any depth. Here we have used a intra-vineyard panel design to investigate pooled bunches from six vines (per panel) in the context of a winemaking scenario. The dissected vineyard was harvested by separate panels, where each panel was then subjected to a standard winemaking procedure with or without the addition of three different enzyme preparations for maceration.

The role of the landscape as a component of the terroir in Spain (DO Somontano, NE Spain)

The components and methodology for characterization of the terroir in Spain have been described by Gómez-Miguel et al. (2003), Sotés et al. (2003), taking into account the full range of environmental factors (i.e: climate, vegetation, topography, soils, altitude, etc.),

Role of anthocyanins and copigmentation in flavonol solubility in red wines 

Over the last years, due to climate change, several red wines, such as the Sangiovese wines, have been often subjected to loss of clarity due to the formation of deposits of fine needle-shaped crystals. This phenomenon turned out to be due to an excess of quercetin (Q) and its glycosides (Q-Gs) in wines. These compounds are synthesized to a large extent when grapes are excessively exposed to UVB radiations in vineyards[1]. Unfortunately, it is not easy to predict the degree of Q precipitation because its solubility strongly depends on the wine and matrix composition[2].