Terroir 2006 banner
IVES 9 IVES Conference Series 9 The impact of differences in soil texture within a vineyard on vine development and wine quality

The impact of differences in soil texture within a vineyard on vine development and wine quality

Abstract

Marlborough Sauvignon Blanc has rapidly gained an international reputation for style and quality. The extent to which this can be attributed to the climate, soils or vineyard management is at present unclear. However, the young alluvial soils of the Wairau Plains are considered to play an important role in determining this unique wine style. Marked changes in soil texture occur on the Wairau Plains over short distances. These changes reflect the historical braided nature of the Wairau River, and often run at right angles (east-west) to the north-south orientation of vineyard rows. Trunk circumferences were measured on whole rows of vines in a vineyard on the Wairau Plains to identify vines exhibiting different vigour levels. Vine vigour as reflected by trunk circumference and pruning weight was increased with the depth to gravel, while fine root density was greater in the gravelly phases of the soil profile. Vine phenology was more advanced where vines were growing on gravelly soils, in particular time of flowering (by 3 days), veraison (by 7 days), soluble sugars at harvest (by 11 days) and the onset of leaf senescence (by 60 days). We conclude that within a vineyard, the higher the proportion of gravelly soils, the more advanced the vine phenology and the riper the fruit and ultimately wine style will be on a particular date.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Michael TROUGHT (1), Robyn DIXON (1), Tim MILLS (2), Marc GREVEN (3), Robert AGNEW (3), Jeffrey L. MAUK (2) and John-Paul PRAAT (4)

(1) Marlborough Wine Research Centre, PO Box 845, Blenheim, New Zealand
(2) Auckland University, Auckland, New Zealand
(3) HortResearch, Marlborough Wine Research Centre, Blenheim, New Zealand
(4) Lincoln Ventures Ltd., Hamilton, New Zealand

Contact the author

Keywords

terroir, Sauvignon Blanc, soil texture, fruit development, vine phenology

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Grape berry size is a key factor in determining New Zealand Pinot noir wine composition

Making high quality but affordable Pinot noir (PN) wine is challenging in most terroirs and New Zealand’s (NZ) situation is no exception. To increase the probability of making highly typical PN wines producers choose to grow grapes in cool climates on lower fertility soils while adopting labour intensive practices. Stringent yield targets and higher input costs necessarily mean that PN wine cost is high, and profitability lower, in line-priced varietal wine ranges. To understand the reasons why higher yielding vines are perceived to produce wines of lower quality we have undertaken an extensive study of PN in NZ. Since 2018, we established a network of twelve trial sites in three NZ regions to find individual vines that produced acceptable commercial yields (above 2.5kg per vine) and wines of composition comparable to “Icon” labels. Approximately 20% of 660 grape lots (N = 135) were selected from within a narrow juice Total Soluble Solids (TSS) range and made into single vine wines under controlled conditions. Principal Component Analysis of the vine, berry, juice and wine parameters from three vintages found grape berry mass to be most effective clustering variable. As berry mass category decreased there was a systematic increase in the probability of higher berry red colour and total phenolics with a parallel increase in wine phenolics, changed aroma fraction and decreased juice amino acids. The influence of berry size on wine composition would appear stronger than the individual effects of vintage, region, vineyard or vine yield. Our observations support the hypothesis that it is possible to produce PN wines that fall within an “Icon” benchmark composition range at yields above 2.5kg per vine provided that the Leaf Area:Fruit Weight ratio is above 12cm2 per g, mean berry mass is below 1.2g and juice TSS is above 22°Brix.

Application of high power ultrasounds during red wine vinification

Wine color is one of the main organoleptic characteristics influencing its quality. It is of especial interest in red vinifications due to the economic resources that wineries have to invest for the extraction of the phenolic compounds responsible of wine color, compounds that are mainly located inside the skin cell vacuoles. Moreover, these phenolic compounds not only influence color but also other organoleptic properties such as body, mouthfeel, astringency and flavour. The transference of phenolic compounds from grapes to must during vinification is closely related with the type of grapes and the winemaking technique.

Phenolic composition of Bordeaux grapes 2009 vintage: comparison with 2006, 2007 and 2008 vintages

‘Cabernet sauvignon’ and ‘Merlot’ are among the most recognized red wine grape cultivars. This work is aimed at investigating the proanthocyanidin composition of skins and seeds to determine the grape variety and the vintage effects on the phenolic composition of Bordeaux grapes.

Chemical activation of ABA signaling in grapevine through ABA receptor agonists

Grapevine (Vitis vinifera) and its derived products, in terms of cultivated area and economic volume, constitute the most relevant fruit crop in the world (7.5 million cultivated hectares). In the current context of climate change, the wine sector faces unprecedented challenges to satisfy a growing demand for wines of greater quality through sustainable viticulture. Global warming threatens quality wine production in Mediterranean wine regions in particular. The increase in heatwaves and drought episodes accelerate the vine phenology and alter the ripening and composition of grapes and wine. Extreme abiotic stress episodes compromise grape production and plant survival, intensifying the pressure on the use of limited resources like water. Abscisic acid (ABA) is an important hormone in the ripening of certain fruits and in plant response to abiotic stress.

Comparison between non-Saccharomyces yeasts for the production of Nero d’Avola wine

Wine production with non-Saccharomyces yeasts is getting larger application due to the positive impact of these yeasts on wine composition. Previous studies showed notably differences in chemical composition of Merlot wines obtained with Torulaspora delbrueckii.