Terroir 2006 banner
IVES 9 IVES Conference Series 9 The impact of differences in soil texture within a vineyard on vine development and wine quality

The impact of differences in soil texture within a vineyard on vine development and wine quality

Abstract

Marlborough Sauvignon Blanc has rapidly gained an international reputation for style and quality. The extent to which this can be attributed to the climate, soils or vineyard management is at present unclear. However, the young alluvial soils of the Wairau Plains are considered to play an important role in determining this unique wine style. Marked changes in soil texture occur on the Wairau Plains over short distances. These changes reflect the historical braided nature of the Wairau River, and often run at right angles (east-west) to the north-south orientation of vineyard rows. Trunk circumferences were measured on whole rows of vines in a vineyard on the Wairau Plains to identify vines exhibiting different vigour levels. Vine vigour as reflected by trunk circumference and pruning weight was increased with the depth to gravel, while fine root density was greater in the gravelly phases of the soil profile. Vine phenology was more advanced where vines were growing on gravelly soils, in particular time of flowering (by 3 days), veraison (by 7 days), soluble sugars at harvest (by 11 days) and the onset of leaf senescence (by 60 days). We conclude that within a vineyard, the higher the proportion of gravelly soils, the more advanced the vine phenology and the riper the fruit and ultimately wine style will be on a particular date.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Michael TROUGHT (1), Robyn DIXON (1), Tim MILLS (2), Marc GREVEN (3), Robert AGNEW (3), Jeffrey L. MAUK (2) and John-Paul PRAAT (4)

(1) Marlborough Wine Research Centre, PO Box 845, Blenheim, New Zealand
(2) Auckland University, Auckland, New Zealand
(3) HortResearch, Marlborough Wine Research Centre, Blenheim, New Zealand
(4) Lincoln Ventures Ltd., Hamilton, New Zealand

Contact the author

Keywords

terroir, Sauvignon Blanc, soil texture, fruit development, vine phenology

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Zonazione dell’area viticola doc durello

Il lavoro di zonazione riveste un ruolo importante per capire le potenzialità e la vocazionalità di una specifica area viticola. La viticoltura dovrebbe essere vista in funzione dell’obiettivo enologico che si vuole realizzare e quindi particolare importanza riveste il risultato delle vinificazioni delle uve provenienti dai vigneti delle diverse aree della zona di produzione oggetto d’indagine. La zonazione dell’area a DOC Monti Lessini Durello ha preso in esame la varietà “Durella”, vitigno autoctono del territorio, che rappresenta la maggior parte della produzione vitivinicola della zona.

Agronomic and oenological behavior of the minority Mandón variety on two rootstocks in the D.O. Arribes

A large population of vines of the Mandón minority red variety (synonymous with Garró) has been located in old vineyards of the D.O. Arribes (Zamora and Salamanca) to conserve and recover this minority variety. The wines made with this variety are characterized by their good structure and color, interesting harmony, an excellently low pH, with high acidity, as well as complex aromas of blue fruits and a marked and expressive minerality.

Direct SPME GC-MS determination of volatile congeners in wines without sample pre-treatment

In this work “ethanol as an internal standard” method was used for the SPME GC-MS quantification of volatile congeners in wines. Our aim was to develop a fast and simple method of wine analysis without additional procedures, reagents etc. A row of standard solutions containing some frequently found congeners in wine was prepared gravimetrically. Suggested method was compared with traditional internal standard method.

EVIDENCE OF THE INTERACTION OF ULTRASOUND AND ASPERGILLOPEPSINS I ON UNSTABLE GRAPE PROTEINS

Most of the effects of ultrasound (US) result from the collapse of bubbles due to cavitation. The shockwave produced is associated with shear forces, along with high localised temperatures and pressures. However, the high-speed stream, radical species formation, and heat generated during sonication may also affect the stability of some enzymes and proteins, depending on their chemical structure. Recently, Ce-lotti et al. (2021) reported the effects of US on protein stability in wines. To investigate this further, the effect of temperature (40°C and 70°C; 60s), sonication (20 kHz and 100 % amplitude, for 20s and 60s, leading to the same temperatures as above, respectively), in combination with Aspergillopepsins I (AP-I) supplementation (100 μg/L), was studied on unstable protein concentration (TLPs and chitinases) using HPLC with an UV–Vis detector in a TLPs-supplemented model system and in an unstable white wine.

INTENSE PULSED LIGHT FOR VINEYARD WASTEWATER: A PROMISING NEW PROCESS OF DEGRADATION FOR PESTICIDES

The use of pesticides for vine growing is responsible for generating an important volume of wastewater. In 2009, 13 processes were authorized for wastewater treatment but they are expensive and the toxicological impact of the secondary metabolites that are formed is not clearly established. Recently photodecomposition processes have been studied and proved an effectiveness to degrade pesticides and to modify their structures (Maheswari et al., 2010, Lassale et al., 2014). In this field, Pulsed Light (PL) seems to be an interesting and efficient process (Baranda et al., 2017). Therefore, the aim of this work was to investigate the PL technology as a new process for the degradation of pesticides.