Terroir 2006 banner
IVES 9 IVES Conference Series 9 The impact of differences in soil texture within a vineyard on vine development and wine quality

The impact of differences in soil texture within a vineyard on vine development and wine quality

Abstract

Marlborough Sauvignon Blanc has rapidly gained an international reputation for style and quality. The extent to which this can be attributed to the climate, soils or vineyard management is at present unclear. However, the young alluvial soils of the Wairau Plains are considered to play an important role in determining this unique wine style. Marked changes in soil texture occur on the Wairau Plains over short distances. These changes reflect the historical braided nature of the Wairau River, and often run at right angles (east-west) to the north-south orientation of vineyard rows. Trunk circumferences were measured on whole rows of vines in a vineyard on the Wairau Plains to identify vines exhibiting different vigour levels. Vine vigour as reflected by trunk circumference and pruning weight was increased with the depth to gravel, while fine root density was greater in the gravelly phases of the soil profile. Vine phenology was more advanced where vines were growing on gravelly soils, in particular time of flowering (by 3 days), veraison (by 7 days), soluble sugars at harvest (by 11 days) and the onset of leaf senescence (by 60 days). We conclude that within a vineyard, the higher the proportion of gravelly soils, the more advanced the vine phenology and the riper the fruit and ultimately wine style will be on a particular date.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Michael TROUGHT (1), Robyn DIXON (1), Tim MILLS (2), Marc GREVEN (3), Robert AGNEW (3), Jeffrey L. MAUK (2) and John-Paul PRAAT (4)

(1) Marlborough Wine Research Centre, PO Box 845, Blenheim, New Zealand
(2) Auckland University, Auckland, New Zealand
(3) HortResearch, Marlborough Wine Research Centre, Blenheim, New Zealand
(4) Lincoln Ventures Ltd., Hamilton, New Zealand

Contact the author

Keywords

terroir, Sauvignon Blanc, soil texture, fruit development, vine phenology

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

What triggers the decision to ripen 

The decision for grape berries to ripen involves a complex interplay of genetic regulation and environmental cues. This review explores the molecular mechanisms underlying the transition from vegetative growth to ripening, focusing on transcriptomic studies and the role of the NAC gene family. Transcriptomic analyses reveal a significant rearrangement of gene expression patterns during this transition, with up-regulation of ripening-related genes and down-regulation of those associated with vegetative growth. A molecular phenology scale providing a high-precision map of berry transcriptomic development, indicates that key molecular changes occur well before the onset of ripening.

Microbial life in the grapevine: what can we expect from the leaf microbiome?

The above-ground parts of plants, which constitute the phyllosphere, have long been considered devoid of bacteria and fungi, at least in their internal tissues and microbial presence there was long considered a sign of disease. However, recent studies have shown that plants harbour complex bacterial communities, the so-called “microbiome”[1]. We are only beginning to unravel the origin of these bacterial plant inhabitants, their community structure and their roles, which in analogy to the gut microbiome, are likely to be of essential nature. Among their multifaceted metabolic possibilities, bacteria have been recently demonstrated to emit a wide range of volatile organic compounds (VOCs), which can greatly impact the growth and development of both the plant and its disease-causing agents.

Effect of vineyard management strategy on the nutritional status of irrigated « Tempranillo » vineyards grown in semi-arid areas

The combination of cover crops with regulated deficit irrigation has been lately shown to be a good method to improve harvest quality in irrigated vineyards of Southern Europe with semiarid climate, as an alternative to the conventional management, that consists on mechanical tillage and irrigation from fruitset to veraison and from then on reduced, or even ended.

A versatile genome editing platform for grapevine: improving biotic and abiotic stress resilience 

New Plant Breeding Techniques (NPBTs) have arisen with the objective of surmounting the constraints inherent in conventional breeding methodologies, thereby enhancing plant resilience against both biotic and abiotic stresses. To date the application of genome editing in grapevine is still limited by the necessity to overcome recalcitrance to produce embryogenic calli and to regenerate plants. In our studies, we developed a smart and versatile genetic transformation system carrying all the most promising features of different genome editing approaches. In specific, we joined the GRF-GIF expression to improve regeneration, the systemic movement of the editing transcripts through tRNA-like sequences (TLS) and the cisgenic-like approach to remove transgenes.

Exploring high throughput secondary trait phenomics to improve grapevine breeding

Modern grapevine breeding programs have overcome many challenges using genomic selection, which has allowed breeders to make targeted selections at earlier stages in the breeding process. However, the cost of genetic testing may present a burden for some programs, and markers often struggle to accurately predict quantitative traits. Recent advances in high throughput, high-dimensional data have provoked investigation into the use of high-dimensional phenomics as a low-cost addition to the grape breeder’s toolkit that may offer advantages in predicting quantitative traits. High-dimensional secondary trait (HDST) data has been employed in annual crops for prediction of agriculturally important traits such as yield.