Terroir 2006 banner
IVES 9 IVES Conference Series 9 Modeling viticultural landscapes: a GIS analysis of the viticultural potential in the Rogue Valley of Oregon

Modeling viticultural landscapes: a GIS analysis of the viticultural potential in the Rogue Valley of Oregon

Abstract

Terroir is a holistic concept that relates to both environmental and cultural factors that together influence the grape growing to wine production continuum. The physical factors that influence the process include matching a given grape variety to its ideal climate along with optimum site characteristics of elevation, slope, aspect, and soil. While some regions have had 100s and even 1000s of years to define, develop, and understand their best terroir, newer regions typically face a trial and error stage of finding the best variety and terroir match. This research facilitates the process by modeling the climate and landscape in a relatively young grape growing region in Oregon, the Rogue Valley. The result is an inventory of land suitability that provides both existing and new growers greater insight into the best terroirs of the region.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Gregory V. JONES, Andrew A. DUFF and Joey W. MYERS

Department of Geography, Southern Oregon University, 1250 Siskiyou Blvd, Ashland, Oregon 97520, U.S.A.

Contact the author

Keywords

grapes, wine, viticulture, terroir, Oregon

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Application to the wine sector of European Convention on the landscapes

The landscape is defined by the European convention of the landscape (Florence, October 20, 2000) like part of the territory as perceived by the populations, whose character results from the action of natural and/or human factors and their interrelationships. This convention is based on the contribution cultural, ecological, environmental, social of the landscapes and aims at a reinforcement of the tools of protection and valorization in particular in the agricultural policies, of regional planning and town planning. Moreover, it encourages a step of identification and qualification of the landscapes and underlines the need for developing the sensitizing and the training of the actors concerned.

EFFECT OF MANNOPROTEIN-RICH EXTRACTS FROM WINE LEES ON PHENOLICCOMPOSITION AND COLOUR OF RED WINE

In 2022, wine production was estimated at around 260 million hl. This high production rate implies to generate a large amount of by-products, which include grape pomace, grape stalks and wine lees. It is estimated that processing 100 tons of grapes leads to ~ 22 tons of by-products from which ~ 6 tons are lees [1]. Wine lees are a sludge-looking material mostly made of dead and living yeast cells, yeast debris and other particles that precipitate at the bottom of wine tanks after alcoholic fermentation. Unlike grape pomace or grape stalks, few strategies have been proposed for the recovery and valorisation of wine less [2].

Impact of grapevine rootstock genotypes on nitrogen status of the scion and phenolic composition in Pinot noir berries and wine

Context and purpose of the study. Nitrogen (N) limitation enhances the production of phenolic compounds in grapes due to the downregulation of the flavonoid biosynthesis pathway.

Long-term sensorial and compositional effects of copper fining on the wine containing ‘reductive’ and ‘tropical’ volatile sulfur compounds

The aim of this study was to investigate long-term sensorial and compositional effects of copper addition to the white wine naturally high in varietal thiol levels, with added volatile sulfur compounds

Reaction Mechanisms of Copper and Iron with Hydrogen Sulfide and Thiols in Model Wine

Fermentation derived sulfidic off-odors due to hydrogen sulfide (H2S) and low molecular weight thiols are commonly encountered in wine production and removed by Cu(II) fining. However, the mechanism underlying Cu(II) fining remains poorly understood, and generally results in increased Cu concentration that lead to deleterious reactions in finished wine. The present study describes a mechanistic investigation of the iron and copper mediated reaction of H2S, cysteine, 3-sulfanylhexan-1-ol, and 6-sulfanylhexan-1-ol with oxygen. The concentrations of H2S, thiols, oxygen, and acetaldehyde were monitored over time. It was found that Cu(II) was rapidly reduced by both H2S and thiols to Cu(I).