Terroir 2006 banner
IVES 9 IVES Conference Series 9 Modeling viticultural landscapes: a GIS analysis of the viticultural potential in the Rogue Valley of Oregon

Modeling viticultural landscapes: a GIS analysis of the viticultural potential in the Rogue Valley of Oregon

Abstract

Terroir is a holistic concept that relates to both environmental and cultural factors that together influence the grape growing to wine production continuum. The physical factors that influence the process include matching a given grape variety to its ideal climate along with optimum site characteristics of elevation, slope, aspect, and soil. While some regions have had 100s and even 1000s of years to define, develop, and understand their best terroir, newer regions typically face a trial and error stage of finding the best variety and terroir match. This research facilitates the process by modeling the climate and landscape in a relatively young grape growing region in Oregon, the Rogue Valley. The result is an inventory of land suitability that provides both existing and new growers greater insight into the best terroirs of the region.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Gregory V. JONES, Andrew A. DUFF and Joey W. MYERS

Department of Geography, Southern Oregon University, 1250 Siskiyou Blvd, Ashland, Oregon 97520, U.S.A.

Contact the author

Keywords

grapes, wine, viticulture, terroir, Oregon

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Generation of functional chitosan derivatives to better understanding the antiseptic effect on Brettanomyces bruxellensis in wine

The addition of fungal chitosan in wine is allowed since 2009 to release some spoilage microorganisms such as Brettanomyces bruxellensis (OIV/OENO 338A/2009; EC 53/2011). This yeast is able to produce volatil phenols and is responsible of organoleptic deviations compromising quality and typicality of red wines [1]. Despite the fact that fungal chitosan is highly renewable, no toxic and non-allergenic, its use remains marginal because this treatment is relatively recent (compare to sulphites treatment) and information are contradictory between different studies described in literature. For all these reasons,

Application of cyclic voltammetry to the classification of enological tannins in relationship to oxygen consumption rate and botanical origin 

Enological tannins are a diversified group of winemaking products that vary in several aspects such as chemical composition, botanical origin, and production method. In consideration of their richness in phenolic compounds, one of their main application in vinification is related to their antioxidant capacity, in particular their ability to consume oxygen during red wine maturation.

Environmental influence on grape phenolic and aromatic compounds in a Nebbiolo selection (Vitis vinifera L.)

Nebbiolo (Vitis vinifera L.) is one of the most important wine red cultivar of North-west Italy. A better understanding of the complex relations among grape aromatic and phenolic maturity and environmental factors may strongly contribute to the improvement of the quality of Nebbiolo wines.

NEAR INFRARED SPECTROSCOPY FOR THE ESTIMATION OF TEMPRANILLO BLANCO VOLATILE COMPOSITION ALONG GRAPE MATURATION

Grape volatile compounds are mainly responsible for wine aroma, so it is important to know the va-rietal aromatic composition throughout ripening process. Currently, there are no tools that allow mea-suring the aromatic composition of grapes, in intact berries and periodically, throughout ripening, in the vineyard or in the winery. For this reason, this work evaluated the use of near infrared spectroscopy (NIR) to estimate the aromatic composition and total soluble solids (TSS) of Tempranillo Blanco berries during ripening. For this purpose, NIR spectra (1100-2100 nm) were acquired from 240 samples of in-tact berries, collected at different dates, from veraison to overripening.

Agri-photovoltaics: first experience above Riesling vines

Agri-photovoltaics (apv) describes the dual use of an agricultural area for food production and solar power generation. There are already a number of systems in operation around the world with various crops and under a wide range of different set-ups. In large parts, they still allow mechanical cultivation and other positive side effects of an APV system were observed in addition to the increase in utilization in the form of electricity and food: effects on the water balance and passive protection against extreme weather events.