Terroir 2006 banner
IVES 9 IVES Conference Series 9 Monitoring water deficit in vineyards by means of Red and Infrared measurements

Monitoring water deficit in vineyards by means of Red and Infrared measurements

Abstract

Vineyard water availability is one of the most important variables both in plant’s production and wine quality, once it regulates several processes, among which the stomata activity. To avoid water deficit, wine producers introduced artificial irrigation in their vineyard, using a semi-empirical process to calculate water amount. Some previous research presented measurements in the infrared wave bands and PAR (photosynthetic active radiation) as a process to estimate water stress and to calculate water needs. This paper analyses and explores the relationship that could be established between red, infrared and PAR in vegetation indices calculation and leaf area index and the relationship between these indices and water availability or deficit. Data from this process could be used to design irrigation schemes, saving water and controlling vineyards needs.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Fernando ALVES (1), Fernanda ALMEIDA (1), Moutinho PEREIRA (2) Nuno Magalhães (3) and Jose ARANHA (4)

(1) ADVID – Assoc. Desenv. Viticultura Duriense, Peso da Regua, Portugal
(2) Dept. Eng. Biológica e Ambiental / CETAV, UTAD, Vila Real, Portugal
(3) Dept Fitotecnia, UTAD, Vila Real, Portugal
(4) Dept. Florestal, UTAD, Vila Real, Portugal

Contact the author

Keywords

vineyards, water deficit, red and infrared, vegetation Index (NDVI)

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Innovative red winemaking strategy: biosurfactant-assisted extraction and stabilization of phenolic compounds

The color is the first attribute perceived by consumers and a major factor determining the quality of red wines. This depends mainly on the content of grape anthocyanins and their extraction into the juice/wine during winemaking. Furthermore, these compounds can undergo reactions that influence the chemical and sensory characteristics of the wine. Monomeric forms are prone to oxidation and adsorption on solid parts.

Balearic varieties of grapevine: study of genetic variability in the response to water stress

The photosynthetic characteristics of twenty varieties of grapevine (Vitis vinifera L.) from Mallorca (Balearic Islands, Spain) and two widespread varieties

The impact of vine nitrogen status on aroma potential expression in Vitis vinifera L. cv. Sauvignon blanc

In interaction with climate and genetic or human factors, the soil is a major component of the viticulture terroir. The mineral composition of the soil influences vine performance and wine sensory attributes. Among the elements that vines take from the soil, nitrogen is the one that has the strongest impact on vine physiology, vigor and grape composition. In addition to its major effect on primary metabolites in berries, nitrogen plays also a decisive role in the secondary metabolism, especially in the production of key compounds for berries quality, like volatile thiols, methoxypyrazines and glutathione (GSH).

Different oxygen and sulphur dioxide concentrations in ‘Sauvignon blanc’ must: effect on the composition of the must and wine

The effects of different oxygen and sulphur dioxide additions to South African ‘Sauvignon blanc’ musts were investigated. Oxygen addition without SO2 protection led to lower levels of certain volatile thiols in the wines, with a corresponding decrease in certain phenols and glutathione concentrations.

Twenty-two shades of grey – An analysis of alcohol regulations in the Arab world

This article compares alcohol regulations across 22 Arab League member countries.