Terroir 2006 banner
IVES 9 IVES Conference Series 9 Monitoring water deficit in vineyards by means of Red and Infrared measurements

Monitoring water deficit in vineyards by means of Red and Infrared measurements

Abstract

Vineyard water availability is one of the most important variables both in plant’s production and wine quality, once it regulates several processes, among which the stomata activity. To avoid water deficit, wine producers introduced artificial irrigation in their vineyard, using a semi-empirical process to calculate water amount. Some previous research presented measurements in the infrared wave bands and PAR (photosynthetic active radiation) as a process to estimate water stress and to calculate water needs. This paper analyses and explores the relationship that could be established between red, infrared and PAR in vegetation indices calculation and leaf area index and the relationship between these indices and water availability or deficit. Data from this process could be used to design irrigation schemes, saving water and controlling vineyards needs.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Fernando ALVES (1), Fernanda ALMEIDA (1), Moutinho PEREIRA (2) Nuno Magalhães (3) and Jose ARANHA (4)

(1) ADVID – Assoc. Desenv. Viticultura Duriense, Peso da Regua, Portugal
(2) Dept. Eng. Biológica e Ambiental / CETAV, UTAD, Vila Real, Portugal
(3) Dept Fitotecnia, UTAD, Vila Real, Portugal
(4) Dept. Florestal, UTAD, Vila Real, Portugal

Contact the author

Keywords

vineyards, water deficit, red and infrared, vegetation Index (NDVI)

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Reconfiguring wine prescription : from traditional critics to digital social networks

The integration of digital social networks (DSN) has profoundly transformed communication practices within the wine industry, reorganizing the dynamics of prescription and marketing.

Merging two genomes: a holistic approach to disentangle rootstock-mediated drought and recovery responses

Viticulture is facing many challenges due to climate change effects with increasingly attention to save resources, such as water, considering that drought events have been predicted to dramatically increase over the next future. Thanks to the -omics techniques, research pushed forward knowledge to deepen facets of drought response in diverse grapevine-rootstock combinations. However, the regulatory mechanisms orchestrating adaptation strategies during drought and recovery in grafted grapevines need further exploration. Herein, we combined ecophysiological, biochemical and molecular approaches to unravel drought and recovery-induced changes in potted Nebbiolo (NE) plants grafted onto three different rootstocks (3309, Kober5BB, Gravesac), by analysing root and leaf tissues.

Effects of management and seed mixture on species composition of vineyard inter-row vegetation, soil characteristics and grape berry traits

Context and purpose. Viticulture has exerted a profound influence on the landscape and biodiversity of numerous countries for centuries.

Conventional and alternative pest management strategies: a comparative proteomic study on musts

In a context of sustainable agriculture, “agroecological immunity” is an emerging concept to reduce the use of chemical pesticides to protect crops against pathogens. This alternative strategy aims to combine different levers including the use of “bio”solutions. These include biocontrol products, some of which being plant defense elicitors, as well as products authorized in organic farming such as copper or sulfur. In vineyards, depending on climate conditions, powdery and downy mildews can be devastating diseases.

Does Dekkera/Brettanomyces wine spoilage raise the risk of biogenic amines intake? A screening in Portuguese red wines

Wine quality and safety are the main concerns of consumers and health agencies. Biogenic amines and polyamines, depending on their concentration and on individuals, in wine can constitute a potential public health concern due to their physiological and toxicological effects