Terroir 2006 banner
IVES 9 IVES Conference Series 9 Monitoring water deficit in vineyards by means of Red and Infrared measurements

Monitoring water deficit in vineyards by means of Red and Infrared measurements

Abstract

Vineyard water availability is one of the most important variables both in plant’s production and wine quality, once it regulates several processes, among which the stomata activity. To avoid water deficit, wine producers introduced artificial irrigation in their vineyard, using a semi-empirical process to calculate water amount. Some previous research presented measurements in the infrared wave bands and PAR (photosynthetic active radiation) as a process to estimate water stress and to calculate water needs. This paper analyses and explores the relationship that could be established between red, infrared and PAR in vegetation indices calculation and leaf area index and the relationship between these indices and water availability or deficit. Data from this process could be used to design irrigation schemes, saving water and controlling vineyards needs.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Fernando ALVES (1), Fernanda ALMEIDA (1), Moutinho PEREIRA (2) Nuno Magalhães (3) and Jose ARANHA (4)

(1) ADVID – Assoc. Desenv. Viticultura Duriense, Peso da Regua, Portugal
(2) Dept. Eng. Biológica e Ambiental / CETAV, UTAD, Vila Real, Portugal
(3) Dept Fitotecnia, UTAD, Vila Real, Portugal
(4) Dept. Florestal, UTAD, Vila Real, Portugal

Contact the author

Keywords

vineyards, water deficit, red and infrared, vegetation Index (NDVI)

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Inert gases persistence in wine storage tank blanketing

It is common to find tanks in the winery with wine below their capacity due to wine transfers between tanks of different capacities or the interruption of operations for periods of a few days. This situation implies the existence of an ullage space in the tank with prolonged contact with the wine causing its absorption/oxidation. Oxygen uptake from the air headspace over the wine due to differences in the partial pressure of O2 can be rapid, up to 1.5 mL of O2 per liter of wine in one hour and 100 cm2 of surface area1 and up to saturation after 4 hours.

Integrating genomic prediction into grapevine breeding programs

Genomic selection (GS) has emerged as a transformative tool for accelerating breeding programs by predicting the genetic potential of individuals using genome-wide markers.

Physical-mechanical berry skin traits as powerful indicators of resistance to botrytis bunch rot

The ongoing climate change results in increasing mean air temperature, which is manifested by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased biotic infection pressure. Thus, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality. Since no resistances or candidate genes have yet been described for Botrytis bunch rot (BBR), physical-mechanical traits like berry size and thick, impermeable berry cuticles phenotyped with high-throughput sensors represent novel effective parameters to predict BBR.

Characterizing the molecular basis of the differences in aromatic precursors found in commercial clones of Vitis vinifera cv. Tannat

Uruguay is known for the production of Tannat wines, which is a neutral variety from an aroma point of view, but capable of providing aromatic precursors that are of interest in the production of wines for ageing. The main aromatic precursors present are glycosidic compounds and carotenoids. The contribution of carotenoid degradation by-products such as norisoprenoids to wine aroma is fundamental, as they are associated with pleasant aroma descriptors and very low olfactory perception thresholds. Several factors have been shown to influence carotenoid concentrations in grapes, such as cultivar, climatic conditions, viticultural region, plant water status, exposure to sunlight and ripening stage.

Effect of foliar application of Ca, Si and their combination on grape volatile composition

Calcium (Ca) is an important nutrient for plants which plays key signaling and structural roles. It has been observed that exogenous Ca application favors the pectin accumulation and inhibition of polygalacturonase enzymes, minimizing fruit spoilage. Silicon (Si) is a non-essential element which has been found to be beneficial for improving crop yield and quality, as well as plant tolerance to diverse abiotic and biotic stress factors. The effect of Si supply to grapevine has been assessed in few investigations, which reported positive changes in grape quality and must composition.