Terroir 2006 banner
IVES 9 IVES Conference Series 9 Vine field monitoring using high resolution remote sensing images: segmentation and characterization of rows of vines

Vine field monitoring using high resolution remote sensing images: segmentation and characterization of rows of vines

Abstract

A new framework for the segmentation and characterization of row crops on remote sensing images has been developed and validated for vineyard monitoring. This framework operates on any high-resolution remote sensing images since it is mainly based on geometric information. It aims at obtaining maps describing the variation of a vegetation index such as NDVI along each row of a parcel.
The framework consists in several steps. First, the segmentation step allows the delineation of the parcel under consideration. A region-growing algorithm, based on the textural properties of row crops, was developed for this purpose. Once the parcel under consideration is delineated, a boundary smoothing process is applied and the row detection process begins. Row detection operates by means of an active contour model based on a network of parallel lines. The last step is the design of vegetative vigor maps. Row vigor is computed using pixels neighboring the lines of the network. Once row vigor is obtained on the rows, 2D vigor-maps are constructed. The values measured on the row are propagated to the inter-row pixels, producing «continuous» vigor maps ready to be exported to a GIS software. We successfully exercised our framework on vineyard images. The resulting parcel segmentations and row detections were accurate and the overall computational time was acceptable.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Jean-Pierre DA COSTA, Christian GERMAIN, Olivier LAVIALLE, Saeid HOMAYOUNI and Gilbert GRENIER

LAPS CNRS – ENITAB – ENSEIRB, Université Bordeaux 1
351 cours de La Libération, 3305 Talence cedex, France

Contact the author

Keywords

remote sensing, image processing, row crop, vine

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

In line monitoring of red wine fermentations using ir spectrospcopy

There has been a shift in modern industry to implement non-destructive and non-invasive process monitoring techniques (Helmdach et al., 2013).

Soils, climate and vine management: their influence on Marlborough Sauvignon blanc wine style

Sauvignon blanc was first planted in Marlborough, New Zealand in the mid-1970s. Since that time, Marlborough has gained an international reputation by producing the definitive wine style of that grape variety.

Use of a new, miniaturized, low-cost spectral sensor to estimate and map the vineyard water status from a mobile 

Optimizing the use of water and improving irrigation strategies has become increasingly important in most winegrowing countries due to the consequences of climate change, which are leading to more frequent droughts, heat waves, or alteration of precipitation patterns. Optimized irrigation scheduling can only be based on a reliable knowledge of the vineyard water status.

In this context, this work aims at the development of a novel methodology, using a contactless, miniaturized, low-cost NIR spectral tool to monitor (on-the-go) the vineyard water status variability. On-the-go spectral measurements were acquired in the vineyard using a NIR micro spectrometer, operating in the 900–1900 nm spectral range, from a ground vehicle moving at 3 km/h. Spectral measurements were collected on the northeast side of the canopy across four different dates (July 8th, 14th, 21st and August 12th) during 2021 season in a commercial vineyard (3 ha). Grapevines of Vitis vinifera L. Graciano planted on a VSP trellis were monitored at solar noon using stem water potential (Ψs) as reference indicators of plant water status. In total, 108 measurements of Ψs were taken (27 vines per date).

Calibration and prediction models were performed using Partial Least Squares (PLS) regression. The best prediction models for grapevine water status yielded a determination coefficient of cross-validation (r2cv) of 0.67 and a root mean square error of cross-validation (RMSEcv) of 0.131 MPa. This predictive model was employed to map the spatial variability of the vineyard water status and provided useful, practical information towards the implementation of appropriate irrigation strategies. The outcomes presented in this work show the great potential of this low-cost methodology to assess the vineyard stem water potential and its spatial variability in a commercial vineyard.

Focus on terroir studies in the eger wine region of Hungary

In 2001, the Hungarian Ministry of Agriculture and Rural Development designated the Institute of Geodesy, Cartography and Remote Sensing (FÖMI) to elaborate a Geographic Information System (GIS) supported Vineyard Register (VINGIS) in Hungary. The basis of this work was a qualification methodology (vineyard and wine cellar cadastre system) dating back to several decades, however, in the 1980s and 1990s the available geographical maps and information technology did not provide enough accuracy for an overall evaluation of viticultural areas. The reason for the VINGIS elaboration and development was an obligation resulting from the EU membership to ensure the agricultural subsidies for the wine–viticulture sector.

Effect of kaolin foliar application on grape cultivar Assyrtiko (Vitis vinifera L.) under vineyard conditions

In the context of climate change and for the sustainable exploitation of Mediterranean vineyards, it is necessary to use new strategies to adapt to the new climatic conditions.