Terroir 2006 banner
IVES 9 IVES Conference Series 9 Vine field monitoring using high resolution remote sensing images: segmentation and characterization of rows of vines

Vine field monitoring using high resolution remote sensing images: segmentation and characterization of rows of vines

Abstract

A new framework for the segmentation and characterization of row crops on remote sensing images has been developed and validated for vineyard monitoring. This framework operates on any high-resolution remote sensing images since it is mainly based on geometric information. It aims at obtaining maps describing the variation of a vegetation index such as NDVI along each row of a parcel.
The framework consists in several steps. First, the segmentation step allows the delineation of the parcel under consideration. A region-growing algorithm, based on the textural properties of row crops, was developed for this purpose. Once the parcel under consideration is delineated, a boundary smoothing process is applied and the row detection process begins. Row detection operates by means of an active contour model based on a network of parallel lines. The last step is the design of vegetative vigor maps. Row vigor is computed using pixels neighboring the lines of the network. Once row vigor is obtained on the rows, 2D vigor-maps are constructed. The values measured on the row are propagated to the inter-row pixels, producing «continuous» vigor maps ready to be exported to a GIS software. We successfully exercised our framework on vineyard images. The resulting parcel segmentations and row detections were accurate and the overall computational time was acceptable.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Jean-Pierre DA COSTA, Christian GERMAIN, Olivier LAVIALLE, Saeid HOMAYOUNI and Gilbert GRENIER

LAPS CNRS – ENITAB – ENSEIRB, Université Bordeaux 1
351 cours de La Libération, 3305 Talence cedex, France

Contact the author

Keywords

remote sensing, image processing, row crop, vine

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Flavonol and anthocyanin potential of Spanish minority grapes and its relationship with wine colour

Global climate change is currently affecting vine phenology and causing a decoupling between technological and phenolic maturity of the grapes [1]. Wine industry has to face the challenge of making quality wines from grapes with an unbalanced phenolic composition.

Uvalino wine: chemical and sensory profile

The evaluation of different chemical compounds present in Uvalino wines was correlated with sensory analysis. The analysis showed a high content of polyphenolic compounds responsible for the organoleptic properties of wine, including color, astringency and bitterness.

Coping with heatwaves: management strategies for berry survival and vineyard resilience

Climate change is leading to an increase in average temperature and in the frequency and severity of heatwaves that is already significantly affecting grapevine phenology and berry composition (Webb et al., 2010). This is compounded by water stress, which is well known to increase the vulnerability of grapevines and berries to heatwaves. In hot climate regions like australia, grape production is only possible due to relatively secure supplies of water for irrigation. However, the upper temperature limits for berry survival of well-watered grapevines remains to be tested.

The aroma diversity of Italian white wines: a further piece added to the D-Wines project

The wide ampelographic heritage of the Italian wine grape varieties represents a richness in terms of biodiversity and potential market value.

Physiological responses of crimson seedless (Vitis vinifera) grapevines to altered micro climatic conditions and different water treatments in the Breede River Valley of South Africa

Challenging conditions created by limited water supply and changes in the climate require an understanding of the physiological status of table grapes along the whole value chain. This is critical to develop tools for regulatory management of growth balances and grape quality. This study aimed to determine the impact of different amounts of water and an altered micro-climate (complete covering of vineyards with plastic) on the physiological reaction of the grapevine during the growth season.