Terroir 2006 banner
IVES 9 IVES Conference Series 9 Soil fertility and confered vigour by rootstocks

Soil fertility and confered vigour by rootstocks

Abstract

The adaptation of rootstock to scion variety and soil determines largely the control of the vegetative growth for grapevine. Many experiments were performed in the vineyard to classify the rootstocks according to their soil adaptation and to their effect on vine vigour. So far there are no data describing the course of appearance of rootstock effects after plantation. Moreover the underlying mechanisms of conferred vigour remain largely unknown. An experimental vineyard was planted with 2 varieties (Merlot and Cabernet-Sauvignon) grafted onto 3 known rootstocks (Riparia Gloire de Montpellier, SO4 and 110R) in a gravely soil from Bordeaux area. Two years after plantation, a high level of soil fertility was created on half of the plot, by adding 100 N units at spring and watering the vines during summer. Soon after plantation and during 4 years, developmental data (phenological stages, shoot growth, shoot diameter, leaf area, pruning wood weight, bud fertility and yield) and physiological data (water status, leaf gas exchanges, mineral analysis, stored carbohydrates) were collected all through the seasons.

It was observed that the rootstocks affected vine vegetative growth early after plantation, before the vines bared any crop and even in the plot where the fertility was high. Parameters describing vegetative growth (shoot growth rate, shoot diameter, leaf area) and biomass accumulation were highly correlated. Significant differences between rootstock / scion combinations were recorded on leaf gas exchanges, stored carbohydrates and water status. However these effects are closely related to the vegetative and reproductive development of the vines. Multidimensional analysis of the data showed the effects of scion variety, rootstock and soil fertility. The invigorating effect of Riparia Gloire de Montpellier remains regardless of soil fertility and scion variety. However this effect is stronger when the scion is Cabernet-Sauvignon. The conferred vigour seems to be related to a very early interaction between rootstock and scion, which occurs regardless of environmental conditions. The determinism of this interaction does not seem to be related to the water and nitrogen status of the vines.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Jean-Pascal TANDONNET, Louis BORDENAVE, Stéphane DECROOCQ and Nathalie OLLAT

UREFV, INRA, C.R. de Bordeaux, BP 81, 33883 Villenave d’Ornon, France

Contact the author

Keywords

grapevine, rootstock, growth, soil water, nitrogen

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Contrast of unfair trade practices in business-to-business relationships in the agricultural and food supply chain: An overview from the vitivinicultural perspective

According to the Directive EU 2019/633, European Union settled a minimum harmonised framework of rules to ensure the prohibitions of unfair commercial practices in business to business relationship of agrifood sector.

Radiative and thermal effects on fruit ripening induced by differences in soil colour

One of the intrinsic parts of a vineyard “terroir” is soil type and one of the characteristics of the soil is it’s colour. This can differ widely from bright white, as for some calcareous soils, to red, as in “terra rossa” soils, or black, as in slate soils.

Effect of ozone application for low-input postharvest dehydration of wine grapes

The postharvest dehydration of grapes is a traditional practice to obtain wines with unique traits (e.g., sweet, dry/reinforced).

Grape metabolites, aroma precursors and the complexities of wine flavour

A critical aspect of wine quality from a consumer perspective is the overall impression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components. Grapes contribute some potent aroma compounds, together with a large pool of non-volatile precursors (e.g. glycoconjugates and amino acid conjugates). Aroma precursors can break down through chemical hydrolysis reactions, or through the action of yeast or enzymes, significantly changing the aroma profile of a wine during winemaking and storage. In addition, glycoconjugates of monoterpenes, norisoprenoids and volatile phenols, together with sulfur-conjugates in wine, provide a reservoir of additional flavour through the in-mouth release of volatiles which may be perceived retro-nasally.

Phenology, thermal requirements and maturation of the SR 0.501-17 wine grape hybrid cultivated in contrasting climate

The use of hybrids in viticulture is one of the alternatives for sustainable production in hot and rainy regions during grapevine maturation. This sustainable production concerns the reduction of pesticide use, adaptation to climate and control of vine decline. The SR 0.501-17 wine grape hybrid, developed in the grapevine program of the Agronomic Institute of Campinas (IAC), is characterized by producing white grapes with small spherical berries with seeds. The agronomic characterization of this hybrid, especially in different climatic conditions, as well as the evaluation of its performance in winemaking are necessary. The objective of this work was to characterize the duration and thermal requirements of the different phenological stages and the influence of rainfall on the physicochemical characteristics of the must in two contrasting climate regions of the State of São Paulo.