Terroir 2006 banner
IVES 9 IVES Conference Series 9 Soil fertility and confered vigour by rootstocks

Soil fertility and confered vigour by rootstocks

Abstract

The adaptation of rootstock to scion variety and soil determines largely the control of the vegetative growth for grapevine. Many experiments were performed in the vineyard to classify the rootstocks according to their soil adaptation and to their effect on vine vigour. So far there are no data describing the course of appearance of rootstock effects after plantation. Moreover the underlying mechanisms of conferred vigour remain largely unknown. An experimental vineyard was planted with 2 varieties (Merlot and Cabernet-Sauvignon) grafted onto 3 known rootstocks (Riparia Gloire de Montpellier, SO4 and 110R) in a gravely soil from Bordeaux area. Two years after plantation, a high level of soil fertility was created on half of the plot, by adding 100 N units at spring and watering the vines during summer. Soon after plantation and during 4 years, developmental data (phenological stages, shoot growth, shoot diameter, leaf area, pruning wood weight, bud fertility and yield) and physiological data (water status, leaf gas exchanges, mineral analysis, stored carbohydrates) were collected all through the seasons.

It was observed that the rootstocks affected vine vegetative growth early after plantation, before the vines bared any crop and even in the plot where the fertility was high. Parameters describing vegetative growth (shoot growth rate, shoot diameter, leaf area) and biomass accumulation were highly correlated. Significant differences between rootstock / scion combinations were recorded on leaf gas exchanges, stored carbohydrates and water status. However these effects are closely related to the vegetative and reproductive development of the vines. Multidimensional analysis of the data showed the effects of scion variety, rootstock and soil fertility. The invigorating effect of Riparia Gloire de Montpellier remains regardless of soil fertility and scion variety. However this effect is stronger when the scion is Cabernet-Sauvignon. The conferred vigour seems to be related to a very early interaction between rootstock and scion, which occurs regardless of environmental conditions. The determinism of this interaction does not seem to be related to the water and nitrogen status of the vines.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Jean-Pascal TANDONNET, Louis BORDENAVE, Stéphane DECROOCQ and Nathalie OLLAT

UREFV, INRA, C.R. de Bordeaux, BP 81, 33883 Villenave d’Ornon, France

Contact the author

Keywords

grapevine, rootstock, growth, soil water, nitrogen

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Contribution du potentiel glycosidique à l’arôme des vins de Grenache noir et Syrah en Vallée du Rhône

Grenache Noir and Syrah are the predominant grape varieties in the French Rhone valley vineyard, and produce wines with well differentiated aromatic notes. This study aimed at investigating the contribution of glycoconjugated precursors to these aromatic specificities, through their analytical profiles and the sensory influence of the odorant compounds they release during wine aging. The aglycones released by enzymatic hydrolysis of glycosidic extracts

VALORIZATION OF GRAPE WINE POMACE USING PULSED ELECTRIC FIELDS (PEF) AND SUPERCRITICAL CO₂ (SC CO₂) EXTRACTION

Wine grape pomace quantitatively and qualitatively represents the most important fraction of wine waste. Namely, this by-product makes ~ 20% of the total mass of vinified grapes, and it is characterized with high concentrations of polyphenolic antioxidants, as well as grape seed oil. Hence, valorization of wine pomace, as an alternative to traditionally employed disposal, has drown considerable interest in recent years. Earlier studies were mostly focused on the extraction of phenolics, while mechanisms enhancing the extraction of lipid fraction from grape pomace, as well as their impact on the grape seed oil quality are far less investigated.

Enhancing grapevine transformation and regeneration: A novel approach using developmental regulators and BeYDV-mediated expression

Grapevine (Vitis vinifera L.) is a challenging plant species to transform and regenerate due to its complex genome and biological characteristics. This limits the development of cisgenic and gene-edited varieties. One hurdle is selecting the best starting tissue for the transformation process, much like isolating suitable tissue for protoplasts. One promising method involves delivering crispr/cas components to protoplasts isolated from embryogenic calli, which are then induced to regenerate.

Methodology for soil study and zoning

La caractérisation des sols en vue d’une étude de terroirs viticoles peut être réalisée à différents niveaux de complexité, suivant le nombre de variables pris en compte et suivant le fait que celles-ci sont spatialisées ou non

Oenococcus oeni clonal diversity in the carbonic maceration winemaking

This essay was aimed to describe the clonal diversity of Oenococcus oeni in the malolactic fermentation of the carbonic maceration (CM) winemaking. The free and the pressed liquids from CM were sampled and compared to the wine from a standard winemaking with previous destemming and crushing (DC) of grapes [1]. O. oeni strain typification was performed by PFGE as González-Arenzana et al. described (2014) [2]. Results showed that 13 genotypes, referred as to letters, were distinguished from the 49 isolated strains, meaning the genotype “a” the 27%, the “b” the 14%, the “c” the 12%, the “d and e” the 10 % each other, and the remaining ones less than the 8% each one.