Terroir 2006 banner
IVES 9 IVES Conference Series 9 Three Nebbiolo clone anthocyanin profile as affected by environmental conditions

Three Nebbiolo clone anthocyanin profile as affected by environmental conditions

Abstract

Vitis vinifera ‘Nebbiolo’ cultivar is a 3’-subsituted anthocyanin prevalent wine variety. It is grown in North-West Italy for the production of high quality ageing wines. In the present work berry skin anthocyanin amounts and profiles of the clones CVT 308, CVT 423 and CVT 142 were studied in 2004 and in 2005 in four environmentally different locations of North-West Italy: Donnas (steep mountain area), Monforte (hilly area, with a pH of 8.1), Vezza (hilly area, with a pH of 8.2) and Lessona (plain area, with a pH of 4.8). The interaction cultivation area vs climatic condition of the year was studied in relation to the clone anthocyanin contents and profiles. Differences in the anthocyanin amounts and profile were kept among sites and in both years and they allowed the discrimination among sites. CVT 308 and CVT 423 showed some analogies in three sites only in 2005, while the CVT 142 anthocyanin composition was similar to the one of clone CVT 423 in Donnas and of clone CVT 308 both in Donnas and in Lessona, but only in 2005. Grapes from Vezza accumulated more sugars and less anthocyanins showing higher percentages of malvidin-3-O-glucoside and of total acylated derivatives respect to the other locations.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Silvia GUIDONI (1), Alessandra FERRANDINO (1) and Franco MANNINI (2)

(1) Dipartimento Colture Arboree, Università di Torino, via L. da Vinci, 44, 10095 Grugliasco (TO), Italy
(2) Istituto Virologia Vegetale CNR, sez. Grugliasco (TO), Italy

Contact the author

Keywords

Vitis vinifera, environment, climate, anthocyanin amount, anthocyanin percentage

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

The impacts of frozen material-other-than-grapes (MOG) on aroma compounds of red wine varieties

An undesirable note called “floral taint” has been observed in red wines by winemakers in the Niagara region caused by large volumes of frozen leaves and petioles [materials-other-than-grapes (MOG)] introduced during mechanical harvest and subsequent winemaking late in the season. The volatiles, which we hypothesized are responsible, are primarily terpenes, norisoprenoids, and specific esters in frozen leaves and petioles. The purpose of this study was to investigate the volatile compounds which may cause the floral taint problem and explore how much of them (thresholds) may lead to the problem. Also, the glycosidic precursors of some of these compounds were analyzed to see the changes happening during frost events.

EFFECT OF DIFFERENT VITICULTURAL AND ENOLOGICAL PRACTICES ON THE PHENOLIC COMPOSITION OF RED WINES

Global climate change is exerting a notable influence on viticulture sector and grape composition. The increase in temperature and the changes in rainfall pattern are causing a gap between phenolic and technological grape maturities [1]. As a result, the composition of grapes at harvest time and, consequently, that of wines are being affected, especially with regards to phenolic composition. Hence, wine quality is decreasing due to changes in the organoleptic properties, such as color and astringency, making necessary to implement new adaptive technologies in wineries to modulate these properties in order to improve wine quality.

Untargeted metabolomics analyses to study taste-active compounds released during post-fermentation maceration of wine

The sensory properties of a wine depends on its colours, aromas and flavors. Regarding red wines, the gustatory part consists of the acid, bitter and sweet tastes

Exploring the prevalence of esca-induced leaf symptoms in French vineyards and the role of climate: a national scale analysis

Esca, a severe trunk disease affecting vineyards, is caused by fungal pathogens that induce wood necrosis and decay, leaf symptoms, yield losses, and potentially a rapid death of the vine. The prevalence of this disease varies across years, regions, cultivars, and plot ages. Despite its significance in understanding and predicting dieback risk in different vineyards, the role of climate in trunk diseases remains a relatively unexplored research area. While some studies have demonstrated the impact of certain climatic conditions on the prevalence of the disease, they often focus on a limited number of plots and yield conflicting results.We conducted a statistical analysis, using a Bayesian approach on a national database comprising prevalence data of esca from over 500 different plots in France, spanning the years 2003 to 2022 and encompassing various cultivars.

Upscaling the integrated terroir zoning through digital soil mapping: a case study in the Designation of Origin Campo de Borja

homogeneous zones by intersecting several partial zonings of major factors that influence vineyard growth. Each of them follows specific process from their corresponding disciplines. Soil zoning specifically refers to a Soil Resource Inventory map that has traditionally been generated by conventional soil mapping methods. These methods have shortcomings in reaching fine cartographic and categorical details and involve significant expenses, which undermines their applicability. A new framework named Digital Soil Mapping has introduced quantitative models by statistical techniques to establish soil-landscape relationships and is able to provide intensive scale cartography.

In the present study, a microzoning at 1:10.000 scale is generated from an initial zoning, where the conventional soil map with polytaxic map units is replaced by a new one from digital techniques that disaggregates them. The comparison between the zonings considers a quantitative evaluation of capability for each Homogeneous Terroir Unit by means of the Viticultural Quality Index and its categorization based on its distribution by map. The spatial intersection of both maps gives rise to a confusion matrix in which the flows of class variations after the substitution are assessed.

The results show a five-fold increase in the number of Homogeneous Terroir Units identified and a larger differentiation among them, evidenced by a wider range in the capability index distribution. Both elements are accompanied by an increase in the detection of areas of higher potential within previously undervalued uniform zones.These features are a direct effect of the improvements brought by Digital Soil Mapping techniques and would verify the advantages of their implementation in the Integrated Terroir zoning. Eventually, such new highly detailed terroir units would benefit precision viticulture and sustainable management practices.