Terroir 2006 banner
IVES 9 IVES Conference Series 9 Three Nebbiolo clone anthocyanin profile as affected by environmental conditions

Three Nebbiolo clone anthocyanin profile as affected by environmental conditions

Abstract

Vitis vinifera ‘Nebbiolo’ cultivar is a 3’-subsituted anthocyanin prevalent wine variety. It is grown in North-West Italy for the production of high quality ageing wines. In the present work berry skin anthocyanin amounts and profiles of the clones CVT 308, CVT 423 and CVT 142 were studied in 2004 and in 2005 in four environmentally different locations of North-West Italy: Donnas (steep mountain area), Monforte (hilly area, with a pH of 8.1), Vezza (hilly area, with a pH of 8.2) and Lessona (plain area, with a pH of 4.8). The interaction cultivation area vs climatic condition of the year was studied in relation to the clone anthocyanin contents and profiles. Differences in the anthocyanin amounts and profile were kept among sites and in both years and they allowed the discrimination among sites. CVT 308 and CVT 423 showed some analogies in three sites only in 2005, while the CVT 142 anthocyanin composition was similar to the one of clone CVT 423 in Donnas and of clone CVT 308 both in Donnas and in Lessona, but only in 2005. Grapes from Vezza accumulated more sugars and less anthocyanins showing higher percentages of malvidin-3-O-glucoside and of total acylated derivatives respect to the other locations.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Silvia GUIDONI (1), Alessandra FERRANDINO (1) and Franco MANNINI (2)

(1) Dipartimento Colture Arboree, Università di Torino, via L. da Vinci, 44, 10095 Grugliasco (TO), Italy
(2) Istituto Virologia Vegetale CNR, sez. Grugliasco (TO), Italy

Contact the author

Keywords

Vitis vinifera, environment, climate, anthocyanin amount, anthocyanin percentage

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Development of analytical sampling technique to study the aroma profile of Pinot Noir wine

A novel and efficient Dispersive Liquid-Liquid Microextraction (DLLME) method coupled with gas chromatography–mass spectrometry (GC–MS) was developed to determine 33 key aroma compounds (esters, alcohols, aldehydes, terpenes, norisoprenoids, fatty acids and phenols) present in Pinot noir (PN) wine. Four critical parameters including extraction solvent type, disperse solvent type, extraction solvent volume and disperse solvent volume were optimised with the aid of D-optimal design.

Salubrity of environment and zoning process: first consideration on the radioactivity of vineyard soils

La salubrité du milieu et des aliments intervient de plus en plus lourdement, et souvent négativement, sur la santé de l’homme, aussi bien sur l’individu que sur la société tout entière.

The role of terroir in tourism led amenity migration: contrasting effects in Tuscany and the Okanagan valley of British Columbia

Definitions of terroir elude consistent agreement. As defined geographical space the common denominators of its conceptualization include natural and cultural elements of life

PAIRING WINE AND STOPPER: AN OLD ISSUE WITH NEW ACHIEVEMENTS

The sensory characteristics of wine are a topic studied by several researchers over time, but it continues to be a current and challenging subject. These characteristics are fundamental for the consumer acceptability, which has increasingly aroused their interest to modulate them in line with current market trends and innovation demands. The wine physical-chemical and sensory properties depend on a wide set of factors: they begin to be designed in the vineyard and are later constructed during the various stages of winemaking. Afterwards, the wine is placed in bottles and stored or commercialized.

Comparative proteomic analysis of wines made from Botrytis cinerea infected and healthy grapes reveal interesting parallels to the gushing phenomenon in sparkling wine

In addition to aroma compounds also protein composition strongly influences the quality of wines. Proteins of wine derive mainly from the plant Vitis vinifera and may be influenced by abiotic stress as well as fermentation conditions or fining. Additionally, fungal infections can affect the protein content as well by introducing fungal proteins or affecting grape protein composition. An infection of the vine with the plant pathogenic fungus Botrytis (B.) cinerea was shown to cause a degradation of proteins in the resulting wine. Moreover, it influences the foaming properties in sparkling wine.