Terroir 2006 banner
IVES 9 IVES Conference Series 9 Three Nebbiolo clone anthocyanin profile as affected by environmental conditions

Three Nebbiolo clone anthocyanin profile as affected by environmental conditions

Abstract

Vitis vinifera ‘Nebbiolo’ cultivar is a 3’-subsituted anthocyanin prevalent wine variety. It is grown in North-West Italy for the production of high quality ageing wines. In the present work berry skin anthocyanin amounts and profiles of the clones CVT 308, CVT 423 and CVT 142 were studied in 2004 and in 2005 in four environmentally different locations of North-West Italy: Donnas (steep mountain area), Monforte (hilly area, with a pH of 8.1), Vezza (hilly area, with a pH of 8.2) and Lessona (plain area, with a pH of 4.8). The interaction cultivation area vs climatic condition of the year was studied in relation to the clone anthocyanin contents and profiles. Differences in the anthocyanin amounts and profile were kept among sites and in both years and they allowed the discrimination among sites. CVT 308 and CVT 423 showed some analogies in three sites only in 2005, while the CVT 142 anthocyanin composition was similar to the one of clone CVT 423 in Donnas and of clone CVT 308 both in Donnas and in Lessona, but only in 2005. Grapes from Vezza accumulated more sugars and less anthocyanins showing higher percentages of malvidin-3-O-glucoside and of total acylated derivatives respect to the other locations.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Silvia GUIDONI (1), Alessandra FERRANDINO (1) and Franco MANNINI (2)

(1) Dipartimento Colture Arboree, Università di Torino, via L. da Vinci, 44, 10095 Grugliasco (TO), Italy
(2) Istituto Virologia Vegetale CNR, sez. Grugliasco (TO), Italy

Contact the author

Keywords

Vitis vinifera, environment, climate, anthocyanin amount, anthocyanin percentage

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Monitoring grapevine downy mildew epidemics with SkySat and PlanetScope imagery

Grapevine downy mildew (GDM), caused by the oomycete Plasmopara viticola, is one of the most destructive diseases of Vitis vinifera worldwide. All V. vinifera cultivars are susceptible to P. viticola infection, and epidemics can spread across an entire vineyard within a matter of weeks. Severe outbreaks cause substantial reductions in yield and fruit quality. Tracking GDM spread by manual scouting is time-consuming and unfeasible over large spatial extents.

Influence of viticulture on the temporary evolution of the landscape: the case of the AO Ribera del Duero (Central Spain)

The European Landscape Convention (ELC, 2001) defined the landscape as the “part of a
territory as perceived by the population and resulting from the action of natural and/or human factors and their interrelationships”. Wine landscapes, protected or not under figures such as cultural landscapes or Cultural heritage, are a clear demonstration of this definition, denoting the interrelationships of the natural
environment and the action of the human, which modulates the territory to give the different wine
landscapes. This work was focused on the study of the effect of the human factors linked to the cultivation of the vine on the modification of the landscape.

Genotypic variability in root architectural traits and putative implications for water uptake in grafted grapevine

Root system architecture (RSA) is important for soil exploration and edaphic resources acquisition by the plant, and thus contributes largely to its productivity and adaptation to environmental stresses, particularly soil water deficit. In grafted grapevine, while the degree of drought tolerance induced by the rootstock has been well documented in the vineyard, information about the underlying physiological processes, particularly at the root level, is scarce, due to the inherent difficulties in observing large root systems in situ. The objectives of this study were to determine genetic differences in the root architectural traits and their relationships to water uptake in two Vitis rootstocks genotypes (RGM, 140Ru) differing in their adaptation to drought. Young rootstocks grafted upon the Riesling variety were transplanted into cylindrical tubes and in 2D rhizotrons under two conditions, well watered and moderate water stress. Root traits were analyzed by digital imaging and the amount of transpired water was measured gravimetrically twice a week. Root phenotyping after 30 days reveal substantial variation in RSA traits between genotypes despite similar total root mass; the drought-tolerant 140Ru showed higher root length density in the deep layer, while the drought-sensitive RGM was characterised by shallow-angled root system development with more basal roots and a larger proportion of fine roots in the upper half of the tube. Water deficit affected canopy size and shoot mass to a greater extent than root development and architectural-related traits for both 140Ru and RGM, suggesting vertical distribution of roots was controlled by genotype rather than plasticity to soil water regime. The deeper root system of 140Ru as compared to RGM correlated with greater daily water uptake and sustained stomata opening under water-limited conditions but had little effect on above-ground growth. Our results highlight that grapevine rootstocks have constitutively distinct RSA phenotypes and that, in the context of climate change, those that develop an extensive root network at depth may provide a desirable advantage to the plant in coping with reduced water resources.

Sugar loading and phenolic accumulation as affected by ripeness level of Syrah/R99 grapes

Le chargement et l’accumulation des sucres ainsi que la biosynthèse des phénols ont été étudiés sur la Syrah, dans le cadre d’un programme de recherche de paramètres qui permettraient de déterminer une ou plusieurs qualités de raisin en relation avec des styles de vins pour un terroir donné. La relation entre la dynamique d’accumulation des

Unravelling regional typicality of Australian premium Shiraz through an untargeted metabolomics approach

Aims: The current study seeks to demonstrate that premium Shiraz wines from different Australian geographic indications (GI) can be distinguished by their volatile compound composition.