Terroir 2006 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2006 9 Integrated approach in terroir studies (Terroir 2006) 9 Influence of edapho-climatic factors on grape quality in Conca de Barberà vineyards (Catalonia, Spain)

Influence of edapho-climatic factors on grape quality in Conca de Barberà vineyards (Catalonia, Spain)

Abstract

Soil and climate of 3 vineyards have been characterised in order to determine their influence on grape quality. These vineyards are located in Conca de Barberà (Catalonia, NE Spain) and belong to Cabernet sauvignon and Grenache noir cultivars. All 3 plots are very close, so only interannual climatic data of the nearest meteorological station have been considered. Different climatic indexes have been calculated from climatic data. The studied vineyard soils present very different textural classes and rock fragment contents, causing very distinct soil water regimes. Besides determining chemical and physical properties of soils, the soil water availability has been characterised using capacitance sensors at different depths for the period from 2003 to 2005. Data of quality of grapes were available. Statistical techniques, concretely Principal Component Analysis and Multiple Regression Analysis, have been used to relate edapho-climatic factors to grape quality. The results show that edapho-climatic data have a high power of estimation on grape quality (generally, R2 higher than 0.75). Climate appeared to be the most influencing factor, followed by water availability. Soil had also influence on grape yield and some must data.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Josep Miquel UBALDE (1), Xavier SORT (1), Rosa Maria POCH (2) and Miquel PORTA (1)

(1) Miguel Torres Winery, C/Miquel Torres i Carbó, 6, 08720 Vilafranca del Penedès, Espagne
(2) University of Lleida, Department of Environment and Soil Science, av. Rovira Roure 191, 25198 Lleida, Espagne

Contact the author

Keywords

vineyard soil, Mediterranean climate, terroir, soil moisture, grape quality

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Influence of irrigation frequency on berry phenolic composition of red grape varieties cultivated in four spanish wine-growing regions

The global warming phenomenon involves the frequency of extreme meteorological events accompanied by a change in rainfall distribution. Irrigation frequency (IF) affects the spatial and temporal soil water distribution but its effects on the phenolic composition of the grape have been scarcely studied. The aim of this work was to evaluate the effects of four deficit irrigation frequencies of 30 % ETo: one irrigation per day (T01), two irrigations per week (T03), one irrigation per week (T07) and one irrigation every two weeks (T15) on berry phenolic composition at harvest.

Development of a new method for detecting acetic acid bacteria in wine

The presence of acetic acid bacteria in wine can lead to the appearance of acetic acid at concentrations above the perception threshold, causing the wine rejection by the consumer. During the winemaking process, avoiding the presence of acetic acid bacteria is very difficult, as there is always a residual population accompanying the wine[1], and the problem arises with the significant development of these microorganisms that metabolizes large amounts of acetic acid.
The concern of wineries to control the presence of acetic acid bacteria in wines during their conservation is due to the absence of simple and effective analyses that allow the detection of these microorganisms in the initial stages.

Bio-acidification of wines by Lachancea thermotolerans

Insufficient acidity in grapes from warm climates/vintages is commonly corrected through addition of tartaric acid during vinification, and less so with other organic acids. An alternative approach involves bio-acidification with the yeast Lachancea thermotolerans (LT) via lactic acid production during fermentation.

Application of non-Saccharomyces yeasts in peculiar winemaking, sparkling and sweet wines: biological acidification, prise de mousse, aroma profile. Two cases of study

In this video recording of the IVES science meeting 2025, Raffaele Guzzon (Fondazione Edmund Mach, Centro di Trasferimento Tecnologico, San Michele all’Adige (TN), Italy) speaks about the application of non-Saccharomyces yeasts in peculiar winemaking, sparkling and sweet wines (biological acidification, prise de mousse, aroma profile). This presentation is based on an original article accessible for free on OENO One.

Dormancy conundrum: thermal requirements plasticity to reach budburst may be explained by annual environmental dynamics

Deciphering grapevine dormancy is crucial in the current context of climatic challenges: advancing budburst phenology and increased late frost probabilities, observed in the last decades and expected to further increase, require deeper understanding. Beyond higher mean temperatures, abiotic stresses such as water deficit have also been emphasized as actors. In this framework, we aimed at exploring new methodologies for tracking dormancy cycle and testing the interplay on its regulation of temperature dynamics and drought.
In a first experiment, twenty-one Vitis vinifera varieties were monitored during ecodormancy and budburst over three years.