Terroir 2006 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2006 9 Integrated approach in terroir studies (Terroir 2006) 9 Study of the “Charentes terroir” for wine production of Merlot and Sauvignon: method, installation of the experimental device, first results

Study of the “Charentes terroir” for wine production of Merlot and Sauvignon: method, installation of the experimental device, first results

Abstract

Cognac vineyard is mainly dedicated to brandy production. Within the vineyard restructuring context, one part is turned over wine varieties for wine production (about 1,500 ha planted from 1999 to 2005). Today, the new wine producers need technical references about qualitative potential of the « Charentes Terroir », varieties and adapted vineyard management. In order to answer to this professional request, an observatory of 18 plots of Merlot and 12 plots of Sauvignon have been laid out since 2003 and 2004 on various kinds of pedoclimate. They have common agronomical characteristics, as plantation spacing (3,800 to 5,000 vines per ha), age (plantation from 1998 to 2001), strength and earliness conferred by the rootstocks, soil management and trellising (« guyot double » pruning). A pedological and roots description, analysis of the different horizons and a water reserves evaluation have been made to characterize the soils. A synthetic pedological plots study validates the experimental device as a representative sample of the agro-pedological vineyard diversity.
Vine behaviour and oenological potential of each plot is studied: phenological stages, growth stop, canopy area, maturity controls, Delta C13. More, the technical team controls the yield by pruning, desuckering and green harvests. Harvest from each plot is vinificated according to a standard protocol. An expert panel tastes wines.
First results show an important climate effect on the west part of the vineyard and an earliness differential for phenological stages and ripeness. However, 3 years of results are too short to conclude definitely because millesime effect is important for the years 2003 to 2005. Thus, one or two more years’ observations will complete this work and several methods of vineyard management will increase the experimentation. The aim is to adapt the wine production to the « terroir » potential.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Marie DESCOTIS (1), Magdalena GIRARD (2), Laura MORNET (3), David LANTHIOME (1), Laetitia CAILLAUD (2), Catherine CAM (4)

(1) ITV France, Antenne de Segonzac, 15 rue Pierre Viala, 16130 Segonzac, France
(2) Chambre d’Agriculture de Charente-Maritime, 3 bd Vladimir, 17100 Saintes, France
(3) Chambre d’Agriculture de Charente, 25 rue de Cagouillet, 16100 Cognac, France
(4) Chambre Régionale d’Agriculture Poitou-Charentes, BP 50002, 86550 Mignaloux-Beauvoir, France

Keywords

terroir, soil, pedoclimate, Charentes, Merlot, Sauvignon

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Physico-chemical properties of vine pruning residues with potential as enological additive

Grapes are one of the world’s primary fruit crops, and pruning activities generate high amounts of annual wood wastes [1]. These pruning shoots contain valuable phenolic compounds and could have numerous potential applications [1,2]. Consequently, the aim of this work was to evaluate the physico-chemical properties of vine pruning residues with potential as enological additives. For this purpose, grapevine shoots from 12 varieties grown in Chile were collected during the winter of 2021.

Assessing and mapping vineyard water status variability using a miniaturized nir spectrophotometer from a moving vehicle

In the actual scenario of climate change, optimization of water usage is becoming critical in sustainable viticulture. Most of the current approaches to assess grapevine water status and drive irrigation scheduling are either destructive, time and labour consuming and monitor a small, limited number of plants. This work presents a novel methodology using a contactless, miniaturized, low-cost NIR spectrometer to monitor the vineyard water status variability from a moving vehicle, to provide reliable information towards precision irrigation.

Terroir, sol et sous-sol : principes de modélisation spatiale de quelques paramètres physiques caractérisant le substrat altéré dans les régions viticoles établies sur socle ancien

For several years, the development of computer resources, and in particular of Geographic Information Systems, have allowed the emergence of a new approach to the analysis and characterization of wine-growing areas (Morlat, 1989; Laville, 1990). These methods, which make it possible to identify homogeneous areas or units of terroir, are based on crossing, statistical analysis (in particular Principal Component Analysis: PCA) and the integration of parameters describing the natural environment in which develop the vine.

Characterization of commercial enological tannins and its effect on human saliva diffusion

Commercial oenological tannins (TECs) are widely used in the wine industry. TECs are rich in condensed tannins, hydrolyzable tannins or a mixture of both. Wine grapes are a important source of proanthocyanidins or condensed tannins while oak wood possess a high concentration of hydrolyzable tannins (Obreque-Slier et al., 2009). TECs contribute with the antioxidant capacity of wine, catalyze oxide-reduction reactions and participate in the removal of sulfur compounds and metals.

Evaluation of two transmittance meters in estimating chlorophyll and nitrogen concentrations in grapevine cultivars

Two transmittance-based chlorophyll meters (SPAD-502 and CCM-200) were evaluated in estimating chlorophyll (Chl) and nitrogen (N) levels in grapevine leaves.