Terroir 2006 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2006 9 Integrated approach in terroir studies (Terroir 2006) 9 Study of the “Charentes terroir” for wine production of Merlot and Sauvignon: method, installation of the experimental device, first results

Study of the “Charentes terroir” for wine production of Merlot and Sauvignon: method, installation of the experimental device, first results

Abstract

Cognac vineyard is mainly dedicated to brandy production. Within the vineyard restructuring context, one part is turned over wine varieties for wine production (about 1,500 ha planted from 1999 to 2005). Today, the new wine producers need technical references about qualitative potential of the « Charentes Terroir », varieties and adapted vineyard management. In order to answer to this professional request, an observatory of 18 plots of Merlot and 12 plots of Sauvignon have been laid out since 2003 and 2004 on various kinds of pedoclimate. They have common agronomical characteristics, as plantation spacing (3,800 to 5,000 vines per ha), age (plantation from 1998 to 2001), strength and earliness conferred by the rootstocks, soil management and trellising (« guyot double » pruning). A pedological and roots description, analysis of the different horizons and a water reserves evaluation have been made to characterize the soils. A synthetic pedological plots study validates the experimental device as a representative sample of the agro-pedological vineyard diversity.
Vine behaviour and oenological potential of each plot is studied: phenological stages, growth stop, canopy area, maturity controls, Delta C13. More, the technical team controls the yield by pruning, desuckering and green harvests. Harvest from each plot is vinificated according to a standard protocol. An expert panel tastes wines.
First results show an important climate effect on the west part of the vineyard and an earliness differential for phenological stages and ripeness. However, 3 years of results are too short to conclude definitely because millesime effect is important for the years 2003 to 2005. Thus, one or two more years’ observations will complete this work and several methods of vineyard management will increase the experimentation. The aim is to adapt the wine production to the « terroir » potential.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Marie DESCOTIS (1), Magdalena GIRARD (2), Laura MORNET (3), David LANTHIOME (1), Laetitia CAILLAUD (2), Catherine CAM (4)

(1) ITV France, Antenne de Segonzac, 15 rue Pierre Viala, 16130 Segonzac, France
(2) Chambre d’Agriculture de Charente-Maritime, 3 bd Vladimir, 17100 Saintes, France
(3) Chambre d’Agriculture de Charente, 25 rue de Cagouillet, 16100 Cognac, France
(4) Chambre Régionale d’Agriculture Poitou-Charentes, BP 50002, 86550 Mignaloux-Beauvoir, France

Keywords

terroir, soil, pedoclimate, Charentes, Merlot, Sauvignon

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Simulating the impact of climate change on grapevine behaviour and viticultural activities

Global climate change affects regional climates and hold implications for wine growing regions worldwide

Protected Designation of Origin (D.P.O.) Valdepeñas: classification and map of soils

The objective of the work described here is the elaboration of a map of the different types of vineyard soils that to guide the famers in the choice of the most productive vine rootstocks and varieties. 90 vineyard soils profiles were analysed in the entire territory of the Origen Denominations of Valdepeñas. The sampling was carried out in 2018 (June to October) by making a sampling grid, followed by photointerpretation and control in the field. The studied soils can be grouped into 9 different soil types (according to FAO 2006 classification): Leptosols, Regosols, Fluvisols, Gleysols, Cambisols, Calcisols, Luvisols and Anthrosols. A map showing the soil distribution with different type of soils has been made with the ArcGIS program. Regarding to the choice of rootstock, Calcisoles are soils with a high active limestone content, so the rootstocks used in these soils must be resistant to this parameter; Luvisols are deep soils with high clay content, so they will support vigorous rootstocks. Because the cartographic units are composed of two or more subgroups, with are associated in variable proportions, 9 different soil associations have been established; Unit 1: Leptosols, Cambisols and Luvisols (80%, 15% and 5% respectively); Unit 2: Cambisols with Regosols and Luvisols (40%, 30% and 30% respectively); Unit 3: Cambisols and Gleysols with Regosols (40%, 40% and 20% respectively); Unit 4: Regosols with Cambisols, Leptosols and Calcisols (40%, 30%, 15% and 15% respectively); Unit 5: Cambisols, Leptosols, Calcisols and Regosols (25% each of them); Unit 6: Luvisols with Cambisol and Calcisols (80%, 10% and 10% respectively); Unit 7: Luvisols and Calcisols with Cambisols (40%, 40% and 20% respectively); Unit 8: Calcisols with, Cambisols and Luvisols (80%, 10% and 10% respectively); Unit 9: Anthrosols. These study allow to elaborate the first map of vineyard soils of this Protected Designation of Origin in Castilla-La Mancha.

Development of a novel UAV based approach for assessing the severity of spring frost and hail damages in vineyards

A solid feature of climate change is that the frequency and severity of weather extremes are increasing. Ranking European countries for the number of crop failures related to extreme events reports France on top followed by Italy and Spain (COM 2021).

Circular economy strategies to reintegrate grape pomace from cv. Lagrein into the food chain

The project REALISM (regionality and circular economy in food products to counteract the Metabolic Syndrome (M.S.)) was initiated to develop antioxidant-rich food products with the ability to reduce the risk of developing the M.S.

Exploring the effect of ripening rates on the composition of aroma and phenolic compounds in Cabernet-Sauvignon wines

The study of cultural practices to delay ripening and the characterization of their effect on wine composition is important in the mitigation of accelerated ripening caused by higher temperatures