Terroir 2006 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2006 9 Integrated approach in terroir studies (Terroir 2006) 9 Study of the “Charentes terroir” for wine production of Merlot and Sauvignon: method, installation of the experimental device, first results

Study of the “Charentes terroir” for wine production of Merlot and Sauvignon: method, installation of the experimental device, first results

Abstract

Cognac vineyard is mainly dedicated to brandy production. Within the vineyard restructuring context, one part is turned over wine varieties for wine production (about 1,500 ha planted from 1999 to 2005). Today, the new wine producers need technical references about qualitative potential of the « Charentes Terroir », varieties and adapted vineyard management. In order to answer to this professional request, an observatory of 18 plots of Merlot and 12 plots of Sauvignon have been laid out since 2003 and 2004 on various kinds of pedoclimate. They have common agronomical characteristics, as plantation spacing (3,800 to 5,000 vines per ha), age (plantation from 1998 to 2001), strength and earliness conferred by the rootstocks, soil management and trellising (« guyot double » pruning). A pedological and roots description, analysis of the different horizons and a water reserves evaluation have been made to characterize the soils. A synthetic pedological plots study validates the experimental device as a representative sample of the agro-pedological vineyard diversity.
Vine behaviour and oenological potential of each plot is studied: phenological stages, growth stop, canopy area, maturity controls, Delta C13. More, the technical team controls the yield by pruning, desuckering and green harvests. Harvest from each plot is vinificated according to a standard protocol. An expert panel tastes wines.
First results show an important climate effect on the west part of the vineyard and an earliness differential for phenological stages and ripeness. However, 3 years of results are too short to conclude definitely because millesime effect is important for the years 2003 to 2005. Thus, one or two more years’ observations will complete this work and several methods of vineyard management will increase the experimentation. The aim is to adapt the wine production to the « terroir » potential.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Marie DESCOTIS (1), Magdalena GIRARD (2), Laura MORNET (3), David LANTHIOME (1), Laetitia CAILLAUD (2), Catherine CAM (4)

(1) ITV France, Antenne de Segonzac, 15 rue Pierre Viala, 16130 Segonzac, France
(2) Chambre d’Agriculture de Charente-Maritime, 3 bd Vladimir, 17100 Saintes, France
(3) Chambre d’Agriculture de Charente, 25 rue de Cagouillet, 16100 Cognac, France
(4) Chambre Régionale d’Agriculture Poitou-Charentes, BP 50002, 86550 Mignaloux-Beauvoir, France

Keywords

terroir, soil, pedoclimate, Charentes, Merlot, Sauvignon

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Adaptation to soil and climate through the choice of plant material

Choosing the rootstock, the scion variety and the training system best suited to the local soil and climate are the key elements for an economically sustainable production of wine. The choice of the rootstock/scion variety best adapted to the characteristics of the soil is essential but, by changing climatic conditions, ongoing climate change disrupts the fine-tuned local equilibrium. Higher temperatures induce shifts in developmental stages, with on the one hand increasing fears of spring frost damages and, on the other hand, ripening during the warmest periods in summer. Expected higher water demand and longer and more frequent drought events are also major concerns. The genetic control of the phenotypes, by genomic information but also by the epigenetic control of gene expression, offers a lot of opportunities for adapting the plant material to the future. For complex traits, genomic selection is also a promising method for predicting phenotypes. However, ecophysiological modelling is necessary to better anticipate the phenotypes in unexplored climatic conditions Genetic approaches applied on parameters of ecophysiological models rather than raw observed data are more than ever the basis for finding, or building, the ideal varieties of the future.

Integrative study of Vitis biodiversity for next-generation breeding of grapevine rootstocks 

Drought is one of the main challenges for viticulture in the context of global change. The choice of rootstock could be leveraged for vineyard adaptation to drought as we can improve plant performance without modifying the scion variety. However, most of the existing rootstocks, selected over a century ago, have a narrow genetic background which could compromise their adaptive potential.

El medio natural de Chile como factor de adaptación de la vid

Chile, junto con Australia, EE.UU., Sudáfrica, Argentina y Nueva Zelanda constituye el grupo de países del nuevo mundo vitivinícola. Todos ellos en conjunto han experimentado en la última década

Spatial variability of temperature is linked to grape composition variability in the Saint-Emilion winegrowing area

Elevated temperature during the grape maturation period is a major threat for grape quality and thus wine quality. Therefore, characterizing the grape composition response to temperature at a larger scale would represent a crucial step towards adaptation to climate change. In response to changes in temperature, various physiological mechanisms regulate grape composition. Primary and secondary metabolisms are both involved in this response, with well-known effects, for example on anthocyanins, and lesser known effects, for example on aromas or aroma precursors. At the field scale or at the regional scale, however, numerous environmental or plant-specific factors intervene to make the effects of temperature difficult to distinguish from overall variability. In this study, it was attempted to overcome this difficulty by selecting well-characterized situations with differing temperatures.
A long-term study of air temperature variability across several Merlot vineyards in the Saint-Emilion and Pomerol wine producing area found significant temperature differences and gradients at various time scales linked to environmental factors. From this study area, a few sites were selected with similar age, soil and training system conditions, and with repeated and contrasted temperature differences during the maturation period. The average temperature difference during the maturation period was about 2°C between cooler and warmer sites, a difference similar to that expected under future climate change scenarios. In close vicinity to the temperature sensors at each site, grape berries were sampled at different times until full maturity during 2019 and 2020. Also, berries from bunches on either side of the row were analyzed separately, allowing an investigation of bunch exposure effect associated with the coupling of berry temperature and solar radiation. Four replicates of pooled berries for each time – site – bunch exposure combination were obtained and analyzed for biochemical composition. Analyses of variance of the biochemical composition data collected at different sampling times reveal significant effects associated with temperature, site, and bunch azimuth. For instance, anthocyanins in grape skins are clearly influenced by temperature and solar radiation exposure, with up to 30% reduction in warmer conditions.

A general phenological model for characterising grape vine flowering and véraison

The timing of phenology is critical if grape quality potential is to be optimized. Phenological process based models are used to predict phenology. In this study, three different models