Terroir 2006 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2006 9 Integrated approach in terroir studies (Terroir 2006) 9 Study of the “Charentes terroir” for wine production of Merlot and Sauvignon: method, installation of the experimental device, first results

Study of the “Charentes terroir” for wine production of Merlot and Sauvignon: method, installation of the experimental device, first results

Abstract

Cognac vineyard is mainly dedicated to brandy production. Within the vineyard restructuring context, one part is turned over wine varieties for wine production (about 1,500 ha planted from 1999 to 2005). Today, the new wine producers need technical references about qualitative potential of the « Charentes Terroir », varieties and adapted vineyard management. In order to answer to this professional request, an observatory of 18 plots of Merlot and 12 plots of Sauvignon have been laid out since 2003 and 2004 on various kinds of pedoclimate. They have common agronomical characteristics, as plantation spacing (3,800 to 5,000 vines per ha), age (plantation from 1998 to 2001), strength and earliness conferred by the rootstocks, soil management and trellising (« guyot double » pruning). A pedological and roots description, analysis of the different horizons and a water reserves evaluation have been made to characterize the soils. A synthetic pedological plots study validates the experimental device as a representative sample of the agro-pedological vineyard diversity.
Vine behaviour and oenological potential of each plot is studied: phenological stages, growth stop, canopy area, maturity controls, Delta C13. More, the technical team controls the yield by pruning, desuckering and green harvests. Harvest from each plot is vinificated according to a standard protocol. An expert panel tastes wines.
First results show an important climate effect on the west part of the vineyard and an earliness differential for phenological stages and ripeness. However, 3 years of results are too short to conclude definitely because millesime effect is important for the years 2003 to 2005. Thus, one or two more years’ observations will complete this work and several methods of vineyard management will increase the experimentation. The aim is to adapt the wine production to the « terroir » potential.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Marie DESCOTIS (1), Magdalena GIRARD (2), Laura MORNET (3), David LANTHIOME (1), Laetitia CAILLAUD (2), Catherine CAM (4)

(1) ITV France, Antenne de Segonzac, 15 rue Pierre Viala, 16130 Segonzac, France
(2) Chambre d’Agriculture de Charente-Maritime, 3 bd Vladimir, 17100 Saintes, France
(3) Chambre d’Agriculture de Charente, 25 rue de Cagouillet, 16100 Cognac, France
(4) Chambre Régionale d’Agriculture Poitou-Charentes, BP 50002, 86550 Mignaloux-Beauvoir, France

Keywords

terroir, soil, pedoclimate, Charentes, Merlot, Sauvignon

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

SIP and save the planet: a sensory and consumer exploration of australian wines made from potentially drought-tolerant white wine grapes

In order to attenuate the effects of climate change on the ability to cultivate quality wine grape vines in Australia, it is essential to adapt to the projected less favourable Australian climate scenarios. One response may be to convert a portion of the current grapevine plantings to those varieties that demand less water and can tolerate increased heat. This investigation aimed to (i) generate sensory profiles and (ii) obtain knowledge about Australian wine consumers’ preferences and opinions of Australian wines made from potentially drought tolerant, white wine grape varieties not traditionally cultivated in Australia. A Rate-All-That-Apply (RATA) sensory panel (n = 49) generated sensory profiles of 44 commercial white wines made from 7 different white grape varieties (Arinto, Fiano, Garganega, Greco, Verdejo, Verdelho and Vermentino), plus two benchmark examples each of an Australian Riesling, Pinot Gris and Chardonnay wine.

Relationship between soil and grapevine variety in the wineyard of Jura: example for the “Trousseau” variety from the “Terroir” of Montigny-Lès-Arsures (France)

Seven plots located in the commune of Montigny-lès-Arsures (Jura, 39), planted with grapevine varieties Trousseau and Savagnin, were chosen for a study of soil pits and a distribution of major and trace chemical elements in soils and wines. It was shown that the mineral matrix of the soil reflects the geological substratum and the sub-surface alteration process, while the organic soil matrix depends on agro-viticultural practices.

Comparison of aroma-related compounds of carbonic maceration and traditional young red winemaking in case of Merlot by means of targeted metabolomic approach

Winemaking decisions and techniques are known to affect the final aromatic composition of red wines. Winemakers put a constant effort into the improved controlling of vinification procedures to achieve better quality. Anyway an increased customer’s demand for uniqueness is often forcing them to adjust and offer new and new interesting products. To support the producers, an improved knowledge on aromatic potential as affected by classical and alternative strategies is needed.

Facteurs physiques et biologiques affectant la production viticole et vinicole de la région avec dénomination d’origine “Condado de Huelva” (SW d’Espagne)

Les facteurs physiques et biologiques du milieu naturel affectant la production viticole de la R.D.O. “Condado de Huelva” et quelques relations les concernant sont étudiés dans les systèmes de la production vinicole ; le bon fonctionnement du Vignoble ayant besoin par ailleurs, du concours d’autres facteurs (Reynier, 1989 ; Paneque et al., 1996, a,b).

Impact on leaf morphology of Vitis vinifera L. cvs Riesling and Cabernet Sauvignon under Free Air Carbon dioxide Enrichment (FACE)

Atmospheric carbon dioxide (CO2) concentration has continuously increased since pre-industrial times from 280 ppm in 1750, and is predicted to exceed 700 ppm by the end of 21st century. For most of C3 plant species elevated CO2 (eCO2) improve photosynthetic apparatus results in an increased plant biomass production. To investigate the effects of eCO2 on morphological leaf characteristics the two Vitis vinifera L. cultivars, Riesling and Cabernet Sauvignon, grown in the Geisenheim VineyardFACE (Free Air Carbon dioxide Enrichment) system were used. The FACE site is located at Geisenheim University (49° 59′ N, 7° 57′ E, 94 m above sea level), Germany and was implemented in 2014 comparing future atmospheric CO2-concentrations (eCO2, predicted for the mid-21st century) with current ambient CO2-conditions (aCO2). Experiments were conducted under rain-fed conditions for two consecutive years (2015 and 2016). Six leaves per repetition of the CO2 treatment were sampled in the field and immediately fixed in a FAA solution (ethanol, H2O, formaldehyde and glacial acetic acid). After 24 h leaf samples were transferred and stored in an ethanol solution. Subsequently, leaf tissue was dehydrated using ethanol series and embedded in paraffin. By using a rotary microtomesections of 5 µm were prepared and fixed on microscopic slides. Subsequent the samples were stained using consecutive staining and washing solutions. Afterwards pictures of the leaf cross-sections were taken using a light microscope and consecutive measurements were conducted with an open source image software. Differences found in leaf cross-sections of the two CO2 treatments were detected for the palisade parenchyma. Leaf thickness, upper and lower epidermis and spongy parenchyma remained less affected under eCO2 conditions. The observed results within grapevine leaf tissues can provide first insights to seasonal adaptation strategies of grapevines under future elevated CO2 concentrations.