Terroir 2006 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2006 9 Application of zoning to increase the value of terroirs (Terroir 2006) 9 Agronomical assessment of a vine « terroir » map: first results in the « AOC » Minervois region

Agronomical assessment of a vine « terroir » map: first results in the « AOC » Minervois region

Abstract

Minervois is a vine region where the first detailed soil map was begun 30 years ago. In 2003, a new map was drawn plotting the soil-landscape associations. This map distinguishes 8 large soil units based on geology. The widest (called « marnes ») is the most complex : it is made of 57 sub-units, which leads to a high variability of the vine behaviour on this unit. We proposed a way to simplify that very complex soil information in order to understand the relationship between vines characteristics and the map sub-units of soil. The 57 first sub-units were turned into 5 new ones. Water constraint and agronomical data were examined for 2 vine cultivars on 47 vine plots among the « marnes » unit and compared to 3 of our simplified sub-units (87% of the total area of the « marnes » unit). Shoot elongation and carbon discrimination were used for estimating water regime during summer. The soil-plant water regime is revealed to be the main factor classifying the 3 sub-units : we show good relationship between grapes and vines characteristics and the new sub-units.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

William TRAMBOUZE and Marie VIGNERON

(1) Chambre d’agriculture de l’Hérault, 15 rue Victor Hugo, 34120 Pézenas, France
(2) Syndicat du Cru Minervois

Contact the author

Keywords

vine terroir, soil unit, map, water regime

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Towards faultless Grenache wines: impact of climate and maturity

Climate change is affecting wine production and inducing significant variability in wine composition between vintages.

Isotopes to distinguish production system in Brazilian viticulture

Organic viticulture integrates practices aimed at foresting positive relationships among, vines, soil, and climate, with a focus on sustainability, social responsibility, and environmental protection. To safeguard production integrity, regulatory bodies worldwide conduct organic certifications in accordance with relevant regulations. Considering that agriculture practices influence the nitrogen, carbon and oxygen isotope composition, the study aimed to investigate the response of these isotopes in grape must cultivated by organic, biodynamic and conventional methods to distinguish between production systems.

Genetic traceability of ‘Nebbiolo’ musts and wines by single nucleotide polymorphism (SNP) genotyping assays

AIM: ‘Nebbiolo’ (Vitis vinifera L.) is one of the most ancient and prestigious Italian grape cultivars. It is renowned for its use in producing monovarietal high-quality red wines, such Barolo and Barbaresco. Wine quality and value can be heavily modified if cultivars other than those allowed are employed.

EFFECTS OF LEAF REMOVAL AT DIFFERENT BUNCHES PHENOLOGICAL STAGES ON FREE AND GLYCOCONJUGATE AROMAS OF SKINS AND PULPS OF TWO ITALIAN RED GRAPES

Canopy-management practices are applied in viticulture to improve berries composition and quality, having a great impact on primary and secondary grape metabolism. Among these techniques, cluster zone leaf removal (defoliation) is widely used to manage air circulation, temperature and light radiation of grape bunches and close environment. Since volatiles are quantitatively and qualitatively influenced by the degree of fruit ripeness, the level of solar exposure, and the thermal environment in which grapes ripen, leaf removal has been shown to affect volatile composition of grape berries [1].

The effects of alternative herbicide free cover cropping systems on soil health, vine performance, berry quality and vineyard biodiversity in a climate change scenario in Switzerland

There is an urgent need in viticulture to adopt alternative herbicide-free soil management strategies to mitigate climate change, increase biodiversity, reduce plant protection products and improve soil quality while minimizing detrimental effects on grapevine’s stress tolerance and fruit quality. To propose sustainable solutions, adapted to different pedoclimatic conditions in Switzerland, we developed a multidisciplinary 4-year project, started in 2020. Objectives of the project are to a) evaluate the impact of green covers (spontaneous flora, winter cover crop and permanent ground cover) on environmental and agronomic parameters and b) develop subsequently innovative strategies for different viticultural contexts of Switzerland. The project is divided into 3 phases: 1) diagnosis, 2) on-farm and 3) on-station experiments. Phase 1) consisted in an assessment of 30 commercial vineyards all over Switzerland, where growers already use different herbicide-free soil management strategies. The most promising practices identified in this exploratory phase will be replicated in commercial vineyards across Switzerland (“on-farm”) as well as in a classical randomized block design in an experimental plot (“on-station”). For phase 1), measurements consisted in evaluation of soil status (compaction, structure, roots development), soil microbial diversity (metagenomics), plant diversity and biomass, vine physiology (water stress, vigor, leaf nitrogen) and berry quality (acidity, sugar, available nitrogen). Interestingly, the permanent ground cover resulted in a higher Shannon index thus a higher biodiversity as compared to the other itineraries. The winter cover crop increased vine nitrogen and vigor while deteriorating soil quality, leaving the soil more exposed and compacted likely due to more frequent tillage. The spontaneous flora led to higher berry sugar accumulation, less nitrogen and higher malic acid concentration putatively due to a higher water retention of the flora in a particularly wet vintage. Phases 2) and 3) are required to confirm those tendencies, over the 3 next vintages and different climatic conditions.