Terroir 2006 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2006 9 Application of zoning to increase the value of terroirs (Terroir 2006) 9 Agronomical assessment of a vine « terroir » map: first results in the « AOC » Minervois region

Agronomical assessment of a vine « terroir » map: first results in the « AOC » Minervois region

Abstract

Minervois is a vine region where the first detailed soil map was begun 30 years ago. In 2003, a new map was drawn plotting the soil-landscape associations. This map distinguishes 8 large soil units based on geology. The widest (called « marnes ») is the most complex : it is made of 57 sub-units, which leads to a high variability of the vine behaviour on this unit. We proposed a way to simplify that very complex soil information in order to understand the relationship between vines characteristics and the map sub-units of soil. The 57 first sub-units were turned into 5 new ones. Water constraint and agronomical data were examined for 2 vine cultivars on 47 vine plots among the « marnes » unit and compared to 3 of our simplified sub-units (87% of the total area of the « marnes » unit). Shoot elongation and carbon discrimination were used for estimating water regime during summer. The soil-plant water regime is revealed to be the main factor classifying the 3 sub-units : we show good relationship between grapes and vines characteristics and the new sub-units.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

William TRAMBOUZE and Marie VIGNERON

(1) Chambre d’agriculture de l’Hérault, 15 rue Victor Hugo, 34120 Pézenas, France
(2) Syndicat du Cru Minervois

Contact the author

Keywords

vine terroir, soil unit, map, water regime

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

HOW OXYGEN CONSUMPTION INFLUENCES RED WINES VOLTAMMETRIC PROFILE

Phenolic compounds play a central role in sensory characteristics of wine, such as colour, mouthfeel, flavour and determine its shelf life. Furthermore, the major non-enzymatic wine oxidation process is due to the catalytic oxidation of phenols in quinones. Due their importance, during the years have been developed different analytical methods to monitor the concentration of phenols in wine, such as Folin-Ciocalteu method, spectrophotometric techniques and HPLC. These methods can also be used to follow some oxidation-related chemical transformations.

Drought tolerance assessment and differentiation of grapevine cultivars using physiological metrics: insights from field studies

This study aimed to validate a protocol and compare metrics for evaluating drought tolerance in two Vitis vinifera grapevine cultivars under field conditions. Various metrics were calculated to represent the physiological responses of plants to progressive water deficit. Data were collected from Sauvignon Blanc and Chardonnay plants subjected to three irrigation levels during the 2022-2023 season, along with data from three previous seasons. Hydro-escape areas were used to assess the plant’s ability to reduce water potential with decreasing soil water availability.

Characterizing chemical influences of smoke on wine via novel application of 13c-labelled smoke

Smoke impact is an ongoing and growing issue for vintners across the globe, with the west coast of the U.S. and Australia being two of the largest wine industries impacted. Wine has shown to be especially sensitive to smoke exposure, often acquiring off-flavor sensory characteristics, such as “burnt rubber”, “ashy”, or other medicinal off-flavors.1 While several studies have examined the chemical composition of smoke influences on wine, some studies disagree on what compounds are having the largest impact on smell and flavor.2 This study is designed as a bottom-up approach to inventory the chemical compounds derived from smoke from a grassland-like fire that are potentially influencing wine chemical composition.

Contribution of soil and atmospheric conditions to leaf water potential in grapevines

Etant lié au sol et aux conditions atmosphériques, le statut hydrique influence la physiologie de la vigne d’une part, mais joue aussi un role important en ce qui concerne la qualité du raisin et donc du vin d’autre part. Nous avons mesuré, dans la région de Stellenbosch, le statut hydrique sur des pieds de Sauvignon Blanc non irrigués, implantés sur 2 terroirs différents, l’un froid, l’autre plus chaud.

New satellite-based sampling protocols for grapevine nutrient monitoring

Extension specialists often recommend nutrient monitoring through leaf blade or petiole sampling twice a season for each vineyard block. However, due to the time and labor required to collect a large, random sample, many growers complete the task infrequently or incorrectly. Readily available remote sensing images capture the vineyard variability at both spatial and temporal scales, which can capture canopy and soil variability and be used to guide growers to representative sampling locations.