Terroir 2006 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2006 9 Contributions to the definition of terroir (Terroir 2006) 9 Sardinia terroir and Cannonau: a zoning approach to discover an ancient tradition

Sardinia terroir and Cannonau: a zoning approach to discover an ancient tradition

Abstract

Cannonau variety is historically grown in a large Sardinia area (Jerzu district) and the vineyards are planted both in the plane and in the sloped hills reaching also 650 m of altitude a.s.l. Thus, in order to discover how climate, soil diversity and growing traditions could account for differences in grape and wine quality, this trial was carried out. Within the area of investigation, eight zones were isolated based on soil characteristics (drainage, depth and texture), altitude and climate. Processing climate data, an important differentiation in temperature and thermal range, was discovered between the vineyards sited in the plane and those located up in the hills. Moreover the plan zones are characterised by a heterogeneity in the distribution of the rainfalls. During 2004 and 2005 grapes were collected from veraison to harvest, and the technological maturity was investigated. An advance in the sugar accumulation and titratable acidity degradation was revealed by comparing the plane with the slopes, and this fact was even more evident with the higher vineyards. A first discrimination emerged between plane and high vineyards: the higher the altitude, the higher the anthocyanin content. The yields (higher in the plan) also contribute to partly explain these results. Opposite to these findings, in 2004 the grapes collected in the plane revealed to be much richer in aroma compounds. This fact is probably to be linked with the particular conformation of the valley that result in an increase of the thermal range at the lower altitudes. The sensory evaluation of the wines obtained processing the grapes collected in the different zones, revealed that a zone fingerprint was maintained. Starting on 2005, measurement of soil humidity was performed, and a relationship with grape quality was ascertained.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Diego TOMASI (1), Antonio CALÒ (1), Paolo SIVILOTTI (1), Clelia TORE (2), Francesca FANTOLA (2),
Orazio LOCCI (2), Elena GODDI (2), Ignazio CAREDDA (2), Serafino URRU (2), Paolo SCHIRRU (2),
Anna SCANO (2), Onofrio GRAVIANO (3), Paolo CARDU (3), Aldo BUIANI (4) and Daniela BORSA (5)

(1) CRA-Istituto Sperimentale per la Viticoltura, Viale XXVIII Aprile 26, I-31015 Conegliano (TV), Italy
(2) ERSAT Sardegna, Cagliari (CA), Italy
(3) Consorzio Interprovinciale per la Frutticoltura, Cagliari (CA), Italy
(4) Cantina Antichi Poderi di Jerzu, Jerzu (NU), Italy
(5) CRA-Istituto Sperimentale per l’Enologia, Asti, Italy

Contact the author

Keywords

Cannonau, zoning, climate, aroma, anthocyanins

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Spatial variability of the nutrient distribution in Jerez vineyard soils (Spain)

From a fertility standpoint, the vine has to extract from the soil mineral substances necessary for its existence. However, the amount of certain available nutrients does not always correspond to a proportional increase in quality.

An analytical framework to site-specifically study climate influence on grapevine involving the functional and Bayesian exploration of farm data time series synchronized using an eGDD thermal index

Climate influence on grapevine physiology is prevalent and this influence is only expected to increase with climate change. Although governed by a general determinism, climate influence on grapevine physiology may present variations according to the terroir. In addition, these site-specific differences are likely to be enhanced when climate influence is studied using farm data. Indeed, farm data integrate additional sources of variation such as a varying representativity of the conditions actually experienced in the field. Nevertheless, there is a real challenge in valuing farm data to enable grape growers to understand their own terroir and consequently adapt their practices to the local conditions. In such a context, this article proposes a framework to site-specifically study climate influence on grapevine physiology using farm data. It focuses on improving the analysis of time series of weather data. The analytical framework includes the synchronization of time series using site-specific thermal indices computed with an original method called Extended Growing Degree Days (eGDD). Synchronized time series are then analyzed using a Bayesian functional Linear regression with Sparse Steps functions (BLiSS) in order to detect site-specific periods of strong climate influence on yield development. The article focuses on temperature and rain influence on grape yield development as a case study. It uses data from three commercial vineyards respectively situated in the Bordeaux region (France), California (USA) and Israel. For all vineyards, common periods of climate influence on yield development were found. They corresponded to already known periods, for example around veraison of the year before harvest. However, the periods differed in their precise timing (e.g. before, around or after veraison), duration and correlation direction with yield. Other periods were found for only one or two vineyards and/or were not referred to in literature, for example during the winter before harvest.

Characterization of a Sémillon clonal population: exploring genetic diversity, metabolomic profiles, and phenotypic variations

Sémillon is a cultivated grape variety known for contributing to dry and sweet white wine production. However, only seven approved clones have been officially recognized in France[1]. In this study, we aimed to characterize the genetic diversity and metabolomic profiles of a Sémillon clonal population, shedding light on the potential variations within this important grape variety.

Island and coastal vineyards in the context of climate change

Aim: The notion of “terroir” enables the attribution of distinctive characteristics to wines from the same region. Climate change raises issues about viticulture, especially the growth of the vines and even more importantly the economic situation of actual wine-growing regions (Schultz and Jones 2010; Quénol 2014). Several studies have addressed the impacts of climate change on viticulture in

Unconventional methods to delve deeper into the influence of temperature and nutrition on Chardonnay wine profiles

Temperature and yeast nutrition profoundly impact wine quality and sensory attributes by modulating yeast aroma production and release during fermentation. While temperature and nitrogen’s individual effects are well-studied, their combined influence, including nutrient type and addition timing, remains underexplored. hence, this study aimed to investigate the simultaneous effects of these factors on fermentation kinetics, aroma production and sensory profile, particularly in a Chardonnay wine production selected as a quite aromatically neutral base.