Terroir 2006 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2006 9 Contributions to the definition of terroir (Terroir 2006) 9 Sardinia terroir and Cannonau: a zoning approach to discover an ancient tradition

Sardinia terroir and Cannonau: a zoning approach to discover an ancient tradition

Abstract

Cannonau variety is historically grown in a large Sardinia area (Jerzu district) and the vineyards are planted both in the plane and in the sloped hills reaching also 650 m of altitude a.s.l. Thus, in order to discover how climate, soil diversity and growing traditions could account for differences in grape and wine quality, this trial was carried out. Within the area of investigation, eight zones were isolated based on soil characteristics (drainage, depth and texture), altitude and climate. Processing climate data, an important differentiation in temperature and thermal range, was discovered between the vineyards sited in the plane and those located up in the hills. Moreover the plan zones are characterised by a heterogeneity in the distribution of the rainfalls. During 2004 and 2005 grapes were collected from veraison to harvest, and the technological maturity was investigated. An advance in the sugar accumulation and titratable acidity degradation was revealed by comparing the plane with the slopes, and this fact was even more evident with the higher vineyards. A first discrimination emerged between plane and high vineyards: the higher the altitude, the higher the anthocyanin content. The yields (higher in the plan) also contribute to partly explain these results. Opposite to these findings, in 2004 the grapes collected in the plane revealed to be much richer in aroma compounds. This fact is probably to be linked with the particular conformation of the valley that result in an increase of the thermal range at the lower altitudes. The sensory evaluation of the wines obtained processing the grapes collected in the different zones, revealed that a zone fingerprint was maintained. Starting on 2005, measurement of soil humidity was performed, and a relationship with grape quality was ascertained.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Diego TOMASI (1), Antonio CALÒ (1), Paolo SIVILOTTI (1), Clelia TORE (2), Francesca FANTOLA (2),
Orazio LOCCI (2), Elena GODDI (2), Ignazio CAREDDA (2), Serafino URRU (2), Paolo SCHIRRU (2),
Anna SCANO (2), Onofrio GRAVIANO (3), Paolo CARDU (3), Aldo BUIANI (4) and Daniela BORSA (5)

(1) CRA-Istituto Sperimentale per la Viticoltura, Viale XXVIII Aprile 26, I-31015 Conegliano (TV), Italy
(2) ERSAT Sardegna, Cagliari (CA), Italy
(3) Consorzio Interprovinciale per la Frutticoltura, Cagliari (CA), Italy
(4) Cantina Antichi Poderi di Jerzu, Jerzu (NU), Italy
(5) CRA-Istituto Sperimentale per l’Enologia, Asti, Italy

Contact the author

Keywords

Cannonau, zoning, climate, aroma, anthocyanins

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

High density balsamic vinegar: application of stable isotope ratio analysis to determine watering down.

Aceto balsamico di Modena IGP (ABM) is an Italian worldwide appreciated PGI (Protected Geographical Indication) vinegar,  obtained from cooked and/or concentrated grape must (at least 20% of the volume), with the addition of at least 10% of wine vinegar and a maximum 2% of caramel for color stability (EU Reg. 583/ 2009).

Evaluation of a biological foliar fertilization system, in the production, agronomic and quality characteristics of three wine grape varieties

Evaluation of the fertility management practices in wine grape varieties production. Wine grape represents one of the most important productions in Greece with major impact to the socioeconomic characteristics of the country. The objective of this study is to evaluate, with the support of Geospatial Technologies, the potential effects of an innovative foliar fertilizer system, which is composed of three parts: a mineral fertilizer in a micronized formulation, a biostimulant as an enhancing factor of the process and, an amino acid compound (SANOVITA concept). The study was established at a collaborative, private vineyard, in the area of Trilofos-Thessaloniki, at the region of Northern Greece.

Volatile analysis of Botrytis contaminated grapes using headspace solid phase microextraction GC-MS

Grapes infected with grey mould due Botrytis cinerea are widespread in vineyards during certain growing conditions.

Do high temperature extremes impact berry tannin composition?

Flavonoids, including flavonols, anthocyanins, and tannins, are
important contributors to grape and wine quality, and their biosynthesis is strongly influenced by bunch microclimate. While the synergistic effect of light and temperature has been intensively examined on flavonoids in relation to bunch exposure, studies targeting the sole effect of high temperature have mostly
focused on anthocyanins during the ripening period. With tannin biosynthesis starting around flowering, heatwaves occurring earlier in the grape growing season could be critical. Only a few papers report the impact of temperature on tannin synthesis and accumulation; to date, none have examined the effect of high temperature extremes which, in the context of climate change, relates to increases in heatwave intensity.

Climate change projections to support the transition to climate-smart viticulture

The Earth’s system is undergoing major changes through a wide range of spatial and temporal scales as a response to growing anthropogenic radiative forcing, which is pushing the whole system far beyond its natural variability. Sources of greenhouse gases largely exceed their sinks, thus leading to a strengthened greenhouse effect. More energy is thereby being supplied to the system, with inevitable shifts in climatic patterns and weather regimes. Over the last decades, these modifications have been manifested in the full statistical distributions of the atmospheric variables, with dramatic changes in the frequency and intensity of extremes. Natural hazards, such as severe droughts, floods, forest fires, or heatwaves, are being triggered by extreme atmospheric events worldwide, thus threatening human activities. Viticultculture is not only exposed to changing climates but is also highly vulnerable, as grapevine phenology and physiological development are strongly controlled by atmospheric conditions. Therefore, the assessment of climate change projections for a given region is critical for climate change adaptation and risk reduction in viticulture. By adopting timely and suitable measures, the future sustainability and resiliency of the sector can be fostered. Climate-grapevine chain modelling is an essential tool for better planning and management. However, the accuracy of the resulting projections is limited by many uncertainties that must be duly taken into account when transferring knowledge to stakeholders and decision-makers. Climate-smart viticulture will comprise ensembles of locally tuned strategies, envisioning both adaptation and mitigation, assisted by emerging technologies and decision-support systems.