Terroir 2006 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2006 9 Contributions to the definition of terroir (Terroir 2006) 9 Sardinia terroir and Cannonau: a zoning approach to discover an ancient tradition

Sardinia terroir and Cannonau: a zoning approach to discover an ancient tradition

Abstract

Cannonau variety is historically grown in a large Sardinia area (Jerzu district) and the vineyards are planted both in the plane and in the sloped hills reaching also 650 m of altitude a.s.l. Thus, in order to discover how climate, soil diversity and growing traditions could account for differences in grape and wine quality, this trial was carried out. Within the area of investigation, eight zones were isolated based on soil characteristics (drainage, depth and texture), altitude and climate. Processing climate data, an important differentiation in temperature and thermal range, was discovered between the vineyards sited in the plane and those located up in the hills. Moreover the plan zones are characterised by a heterogeneity in the distribution of the rainfalls. During 2004 and 2005 grapes were collected from veraison to harvest, and the technological maturity was investigated. An advance in the sugar accumulation and titratable acidity degradation was revealed by comparing the plane with the slopes, and this fact was even more evident with the higher vineyards. A first discrimination emerged between plane and high vineyards: the higher the altitude, the higher the anthocyanin content. The yields (higher in the plan) also contribute to partly explain these results. Opposite to these findings, in 2004 the grapes collected in the plane revealed to be much richer in aroma compounds. This fact is probably to be linked with the particular conformation of the valley that result in an increase of the thermal range at the lower altitudes. The sensory evaluation of the wines obtained processing the grapes collected in the different zones, revealed that a zone fingerprint was maintained. Starting on 2005, measurement of soil humidity was performed, and a relationship with grape quality was ascertained.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Diego TOMASI (1), Antonio CALÒ (1), Paolo SIVILOTTI (1), Clelia TORE (2), Francesca FANTOLA (2),
Orazio LOCCI (2), Elena GODDI (2), Ignazio CAREDDA (2), Serafino URRU (2), Paolo SCHIRRU (2),
Anna SCANO (2), Onofrio GRAVIANO (3), Paolo CARDU (3), Aldo BUIANI (4) and Daniela BORSA (5)

(1) CRA-Istituto Sperimentale per la Viticoltura, Viale XXVIII Aprile 26, I-31015 Conegliano (TV), Italy
(2) ERSAT Sardegna, Cagliari (CA), Italy
(3) Consorzio Interprovinciale per la Frutticoltura, Cagliari (CA), Italy
(4) Cantina Antichi Poderi di Jerzu, Jerzu (NU), Italy
(5) CRA-Istituto Sperimentale per l’Enologia, Asti, Italy

Contact the author

Keywords

Cannonau, zoning, climate, aroma, anthocyanins

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Can wine composition predict quality? A metabolomics approach to assessing Pinot noir wine quality as rated by experts

The perception of wine quality is determined by the assessment of multiple sensory stimuli, including aroma, taste, mouthfeel and visual aspects. With so many different parameters contributing to the overall perception of wine quality, it is important to consider the contribution of all metabolites in a wine when attempting to relate composition to quality.

Climate modeling at local scale in the Waipara winegrowing region in the climate change context

In viticulture, a warming climate can have a very significant impact on grapevine development and therefore on the quality and characteristics of wines across different spatial scales, ranging from global to local. In order to adapt wine-growing to climate change, global climate models can be used to define future scenarios, but only at the scale of major wine regions. Despite the huge progress made over the last ten years in terms of the spatial resolution of climate models (now downscaled to a few square kilometres), they are not yet sufficiently precise to account for the local climate variability associated with such parameters as local topography, in spite of these parameters being decisive for vine and wine characteristics. This study describes a method to downscale future climate scenarios to vineyard scale. Networks of data loggers have been used to collect air temperature at canopy level in the Waipara winegrowing region (New Zealand) over five growing seasons. These measurements allow the creation of fine-scale geostatistical models and maps of temperature (at 100 m resolution) for the growing season. In order to model climate change at pilot site scale, these geostatistical models have been combined with regional climate change predictions for the periods 2031-2050 and 2081-2100 based on the RCP8.5 climate change scenario. The integration of local climate variability with regionalized climate change simulations allows assessment of the impacts of climate change at the vineyard scale. The improved knowledge gained using this methodology results from the increased horizontal resolution that better addresses the concerns of winegrowers. The results provide the local winegrowers with information necessary to understand current processes, as well as historical and future viticulture trends at the scale of their site, thereby facilitating decisions about future response strategies.

20-Year-Old data set: scion x rootstock x climate, relationships. Effects on phenology and sugar dynamics

Global warming is one of the biggest environmental, social, and economic threats. In the Douro Valley, change to the climate are expected in the coming years, namely an increase in average temperature and a decrease in annual precipitation. Since vine cultivation is extremely vulnerable and influenced by the climate, these changes are likely to have negative effects on the production and quality of wine.
Adaptation is a major challenge facing the viticulture sector where the choice of plant material plays an important role, particularly the rootstock as it is a driver for adaptation with a wide range of effects, the most important being phylloxera, nematode and salt, tolerance to drought and a complex set of interactions in the grafted plant.
In an experimental vineyard, established in the Douro Region in 1997, with four randomized blocs, with five varieties, Touriga Nacional, Tinta Barroca, Touriga Franca and Tinta Roriz, grafted in four rootstocks, Rupestris du Lot, R110, 196-17C, R99 and 1103P, data was collected consecutively over 20 years (2001-2020). Phenological observations were made two to three times a week, following established criteria, to determine the average dates of budbreak, flowering and veraison. During maturation, weekly berry samples were taken to study the dynamics of sugar accumulation, amongst other parameters. Climate data was collected from a weather station located near the vineyard parcel, with data classified through several climatic indices.
The results achieved show a very low coefficient of variations in the average date of the phenophases and an important contribution from the rootstock in the dynamic of the phenology, allowing a delay in the cycle of up to10-12 days for the different combinations. The Principal Component Analysis performed, evaluating trends in the physical-chemical parameters, highlighted the effect of the climate and rootstock on fruit quality by grape varieties.

Unveiling the bioactive potential of aglianco grape pomace: oleanolic acid as a promising natural product

The winemaking industry generates a substantial amount of byproducts, including grape pomace, which is often discarded as waste. However, this seemingly useless material holds a wealth of bioactive compounds with potential health benefits. Recognizing the value of circular economy principles, this study delves into the comprehensive chemical analysis of aglianco grape pomace, aiming to transform this byproduct into a valuable resource.

The opportunities offered by the climate change

Based on the results of experiments since 2000 at the Institut Agro Montpellier and at INRAE – Pech Rouge, and on the international experience acquired during scientific missions, a global reflection on the opportunities offered by climate change is proposed.