Terroir 2006 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2006 9 Contributions to the definition of terroir (Terroir 2006) 9 Sardinia terroir and Cannonau: a zoning approach to discover an ancient tradition

Sardinia terroir and Cannonau: a zoning approach to discover an ancient tradition

Abstract

Cannonau variety is historically grown in a large Sardinia area (Jerzu district) and the vineyards are planted both in the plane and in the sloped hills reaching also 650 m of altitude a.s.l. Thus, in order to discover how climate, soil diversity and growing traditions could account for differences in grape and wine quality, this trial was carried out. Within the area of investigation, eight zones were isolated based on soil characteristics (drainage, depth and texture), altitude and climate. Processing climate data, an important differentiation in temperature and thermal range, was discovered between the vineyards sited in the plane and those located up in the hills. Moreover the plan zones are characterised by a heterogeneity in the distribution of the rainfalls. During 2004 and 2005 grapes were collected from veraison to harvest, and the technological maturity was investigated. An advance in the sugar accumulation and titratable acidity degradation was revealed by comparing the plane with the slopes, and this fact was even more evident with the higher vineyards. A first discrimination emerged between plane and high vineyards: the higher the altitude, the higher the anthocyanin content. The yields (higher in the plan) also contribute to partly explain these results. Opposite to these findings, in 2004 the grapes collected in the plane revealed to be much richer in aroma compounds. This fact is probably to be linked with the particular conformation of the valley that result in an increase of the thermal range at the lower altitudes. The sensory evaluation of the wines obtained processing the grapes collected in the different zones, revealed that a zone fingerprint was maintained. Starting on 2005, measurement of soil humidity was performed, and a relationship with grape quality was ascertained.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Diego TOMASI (1), Antonio CALÒ (1), Paolo SIVILOTTI (1), Clelia TORE (2), Francesca FANTOLA (2),
Orazio LOCCI (2), Elena GODDI (2), Ignazio CAREDDA (2), Serafino URRU (2), Paolo SCHIRRU (2),
Anna SCANO (2), Onofrio GRAVIANO (3), Paolo CARDU (3), Aldo BUIANI (4) and Daniela BORSA (5)

(1) CRA-Istituto Sperimentale per la Viticoltura, Viale XXVIII Aprile 26, I-31015 Conegliano (TV), Italy
(2) ERSAT Sardegna, Cagliari (CA), Italy
(3) Consorzio Interprovinciale per la Frutticoltura, Cagliari (CA), Italy
(4) Cantina Antichi Poderi di Jerzu, Jerzu (NU), Italy
(5) CRA-Istituto Sperimentale per l’Enologia, Asti, Italy

Contact the author

Keywords

Cannonau, zoning, climate, aroma, anthocyanins

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Grapevine bud fertility under elevated carbon dioxide

Aims: Microscopic bud dissection is a common tool used to assess grapevine bud fertility and therefore to predict the yield of the following season

A novel approach for the identification of new biomarkers of wine consumption in human urine using untargeted metabolomics

Wine is one of the most representative components of Mediterranean diet. Moderate wine intake together with food, has been positively correlated with reduced risk of many chronic diseases. This beneficial effect seems to be ascribed to elevated polyphenolic content of wine [1]. Traditional approaches for the identification of wine biomarkers consumption include targeted metabolomics that focuses on the quantification of well-defined metabolites, losing a valuable information about a massive number of compounds. On the other hand, untargeted metabolomics can disclose a large quantity of signals corresponding to potential biomarkers in a single analysis with high sensitivity and resolution.

Time vs drought: leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot Noir

Global warming and increased frequency and/or severity of drought events are among the most threatening consequences of climate change for agricultural crops. In response to drought, grapevine (as many other plants) exhibits osmotic adjustment through active accumulation of osmolytes which in turn shift the leaf turgor loss point (TLP) to more negative values, allowing to maintain stomata opened at lower water potentials1. We investigated the capacity of Pinot noir leaves to modulate their osmotic potential as a function of: (i) time (seasonal osmoregulation), (ii) growing temperatures, and (iii) drought events, to enhance comprehension of the resilience of grapevines in drought conditions. We performed trails under semi-controlled field conditions, and in two different greenhouse chambers (20/15 °C vs 25/20 °C day/night). For two consecutive vegetative seasons, grafted potted grapevines (Pinot noir/SO4) were subjected to two different water regimes for at least 30 days: well-watered (WW) and water deficit (WD).

How can yeast modulate Divona’s aromatic profile?

Volatile thiols play a key role in the aromatic expression of white wines, contributing to notes such as passion fruit, grapefruit, and herbal nuances [1]. These compounds, present as non-volatile precursors in grapes, require enzymatic activation to be released and realize their aromatic potential.

Using δ13C and hydroscapes as a tool for discriminating cultivar specific drought response

Measurement of carbon isotope discrimination in berry juice sugars at maturity (δ13C) provides an integrated assessment of water use efficiency (WUE) during the period of berry ripening, and when collected over multiple seasons can be used as an indication of drought stress response. Berry juice δ13C measurements were carried out on 48 different varieties planted in a common garden experiment in Bordeaux, France from 2014 through 2021 and were paired with midday and predawn leaf water potential measurements on the same vines in a subset of six varieties. The aim was to discriminate a large panel of varieties based on their stomatal behaviour and potentially identify hydraulic traits characterizing drought tolerance by comparing δ13C and hydroscapes (the visualisation of plant stomatal behaviour as a response to predawn water potential). Cluster analysis found that δ13C values are likely affected by the differing phenology of each variety, resulting in berry ripening of different varieties taking place under different stress conditions within the same year. We accounted for these phenological differences and found that cluster analysis based on specific δ13C metrics created a classification of varieties that corresponds well to our current empirical understanding of their relative drought tolerances. In addition, we analysed the water potential regulation of the subset of six varieties (using the hydroscape approach) and found that it was well correlated with some δ13C metrics. Surprisingly, a variety’s water potential regulation (specifically its minimum critical leaf water potential under water deficit) was strongly correlated to δ13C values under well-watered conditions, suggesting that base WUE may have a stronger impact on drought tolerance than WUE under water deficit. These results give strong insights on the innate WUE of a very large panel of varieties and suggest that studies of drought tolerance should include traits expressed under non-limiting conditions.