Terroir 2004 banner
IVES 9 IVES Conference Series 9 Atmospheric modeling: a tool to identify locations best suited for vine cultivation. Preliminary results in the Stellenbosch region

Atmospheric modeling: a tool to identify locations best suited for vine cultivation. Preliminary results in the Stellenbosch region

Abstract

The choice of sites for viticulture depends on natural environmental factors, particularly climate, as grapevines have specific climatic requirements for optimum physiological performance and berry quality achievement. In the Stellenbosch wine-producing region, the complex topography and the proximity of the ocean create a variety of topoclimates resulting in different growth conditions for vines within short distances.
The Regional Atmospheric Modeling System (RAMS) was used to perform numerical simulations over the South Western Cape, for a period of 18 days during grape ripening (February 2000). Four 4 nested grids (25 km, 5 km, 1 km and 200 m of resolution) were used, the coarse grid being the computational domain (taking the large scale circulation into account), while the finest resolution (200m) focused on the vineyards south of Stellenbosch (taking the local circulations into account) in order to extrapolate climatic data at a fine scale. Data from the analysis file were extracted and remapped using the climatic thresholds for viticulture, thereby making the meso-scale atmospheric modeling system applicable to grapevine cultivation. Temperatures were grouped into different ranges that would affect the physiology of the vine.
These preliminary results identified locations near Stellenbosch according to the thermal stresses for specific days as well as their potential to meet the climatic requirements for optimum physiological performance of the vine. Three typical weather situations are described at the peak of the photosynthetic performance period (12:00), using results of the two finest grid resolutions (1 km and 200 m). Modeled hourly data were extracted from the analysis file in order to calculate the mean hourly temperature fields for a 16-day period (1-16 Feb 2000) and the mean data were then reintegrated into a GIS as an additional descriptive variable useful for terroir identification.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

V. Bonnardot (1), S. Cautenet (2), H. Beukes (1) and J.J. Hunter (3)

(1) ARC-Institute for Soil, Climate and Water, Private Bag X5026, Stellenbosch 7599, RSA
(2) Laboratoire de Météorologie Physique (UMR 6016-CNRS), Blaise Pascal University, 24 Avenue des Landais, 63177 Aubière, France
(3) ARC Infruitec-Nietvoorbij Institute for Fruit, Vine and Wine, Private Bag, X5026, Stellenbosch 7599, RSA

Contact the author

Keywords

List of different keywords (keyword1, keyword2, keyword3)

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Biotic and abiotic factors affecting physiological aspects underlying vegetative vigour in two commercial grapevine varieties

Grapevine vigour, defined as the propensity to assimilate, store and/or use non-structural sugars for allowing fast growth of shoots and producing large canopies[1], is crucial to optimize vineyard management. Recently, a model has been proposed for predicting the vigor of young grapevines through the measurement of the vegetative growth and physiological parameters, such as water status and gas exchange[2]. Our objectives were (1) to explore the influence of the association of two grapevine varieties (Tempranillo and Cabernet Sauvignon, grafted onto R110 rootstocks) with arbuscular mycorrhizal fungi (AMF) on the vegetative vigour of young plants; and (2) to assess the effect of environmental factors linked to climate change on the vegetative vigour of Cabernet Sauvignon.

Early detection project – make a GTD infection visible without disease symptoms

The presence of grapevine trunk diseases (GTDs) related pathogens leads to severe economic losses in wine‐growing regions all over the world

Représentation holistique d’une dynamique pluridisciplinaire suite à la cartographie des sols en Beaujolais

Une démarche de cartographie des sols a été engagée en 2009 par l’interprofession des vins du Beaujolais à l’initiative des professionnels de la région. A fin 2015

Exploring microbial interactions between Saccharomyces cerevisiae and non-Saccharomyces yeast starters in vinification

Winemaking is a complex microbial process involving the co-existence and interactions of various microorganisms [1].

La balance hydrique explique davantage la diversité intravariétale du titre alcoométrique du Merlot que l’accumulation des sucres

Dans le cadre de TerclimPro 2025, Charles Romieu a présenté un article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/8506