Terroir 2004 banner
IVES 9 IVES Conference Series 9 Methodological approach to zoning

Methodological approach to zoning

Abstract

An appellation or geographic indication should be based on the terroir concept in order to ensure its integrity. The delimitation of viticultural terroirs must include two consecutive or parallel steps, namely (a) the characterisation of the environment and identification of homogenous environmental units (basic terroir units, natural terroir units) taking all natural factors into account, as well as (b) the characterisation of the viticultural and oenological potential of these units over time.
Une appellation ou indication géographique doit être basée sur le concept du terroir pour assurer son intégrité. La délimitation des terroirs viticoles doit inclure deux étapes consécutives ou parallèles, en l’occurrence (a) la caractérisation de l’environnement et l’identification d’unités environnementales homogènes (unités terroir de base, unités terroir naturels) prenant en compte tout facteurs naturels, ainsi que (b) la caractérisation du potentiel vitivinicole de ces unités à travers le temps.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

V.A. Carey (1), V. Bonnardot (2)

(1) Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, 7602
Matieland, South Africa
(2) ARC-ISCW

Contact the author

Keywords

Zoning, terroir, climate, regional atmospheric modelling

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

A comparative analysis of regions worldwide with Pinot noir

This study examines the growing season climates of selected wine regions worldwide that have significant areas under Pinot noir.

Evaluation of the enological potential of red grapes in southern Brazil

The Campanha Gaúcha is located in the pampa biome and has unique characteristics, as it is the hottest producing region with the lowest volume of rain in Southern Brazil. Furthermore, the large extensions of flat or low-sloping areas, harsh winters and great sunshine during the ripening period, made this the second largest producer of fine wines in Brazil.

METHYL SALICYLATE, A COMPOUND INVOLVED IN BORDEAUX RED WINES PRODUCED WITHOUT SULFITES ADDITION

Sulfur dioxide (SO₂) is the most commonly used additive during winemaking to protect wine from oxidation and from microorganisms. Thus, since the 18th century, SO₂ was almost systematically present in wines. Recently, wines produced without any addition of SO₂ during all the winemaking process including bottling became more and more popular for consumers. A recent study dedicated to sensory characterization of Bordeaux red wines produced without added SO₂, revealed that such wines were perceived differently from similar wines produced with using SO₂ and were characterized by specific fruity aromas and coolness1,2.

A generic method to analyze vine water deficit continuously

In the context of global warming, water scarcity is becoming an increasing issue worldwide. However, the reference method to characterize vine water deficit is based on water potential measurement, which is a destructive and discontinuous method. The current climatic context emphasizes the need for more precise and more continuous vineyard water use measurements in order to optimize irrigation and vine water deficit monitoring.

Barrels ad-hoc: Spanish oak wood classification by NIRs 

The wooden barrel is a key factor in enology, since wine chemical composition and sensory properties changes significantly in contact with the barrel[1]. Today’s highly competitive market constantly demands new differentiated products and wineries search innovations continuously.
Wood selection is crucial: barrels stability to keep constant their contribution and the result on products, and additional and differentiated wood contributions to impact their new products. Oak wood selection has traditionally been carried out using parameters such as specie, location and grain, however, it goes one step further nowadays. Large cooperage work with non-destructive techniques that allow classifying oak wood quickly and easily according to their organoleptic contribution[2].